Bridging Neural & Symbolic
Proof Automation

Talia Ringer
University of Illinois Urbana-Champaign

Tree Functions with ChatGPT

Tree Functions with ChatGPT

Tree Functions with ChatGPT

Tree Functions with ChatGPT

Tree Functions with ChatGPT

Tree Functions with ChatGPT

Tree Functions with ChatGPT

true

Tree Functions with ChatGPT

true ...

Tree Functions with ChatGPT

The code you provided doesn't count left

leaves that occur on right branches, but | want it to.
Can you fix it so that it does? For example, this code
should print false since 3 is not even:

-
let tree = Node (Leaf 2, Node (Leaf 3, Leaf 4))
let () = Printf.printf "%b\n"
(check_predicate_left_leaves is_even tree)

10

Tree Functions with ChatGPT

6
®)

let rec check_predicate_left_leaves predicate tree =
et rec aux is_left = function
Leaf x -> if is_left then predicate x else true

In aux true tree

let tree = Node (Leaf 2, Node (Leaf 3, Leaf 4))
let () = Printf.printf "%b\n"
(check_predicate_left_leaves is_even tree)

Node (left, right) -> (aux true left) && (aux false right)

.llll
>

!
b

I
]

W

11

Tree Functions with ChatGPT

6
S)

let rec check_predicate_left_leaves predicate tree =
et rec aux is_left = function
Leaf x -> if is_left then predicate x else true

In aux true tree

let tree = Node (Leaf 2, Node (Leaf 3, Leaf 4))
let () = Printf.printf "%b\n"
ucheck_predicate_left_leaves is_even tree)

Node (left, right) -> (aux true left) && (aux false right)

.llll
e

!
b

I
]

W

Passes test!

12

Tree Functions with ChatGPT

let rec check_predicate_left_leaves predicate tree =
et rec aux is_left = function

Leaf x -> if is_left then predicate x else true

Node (left, right) -> (aux true left) && (aux false right)
In aux true tree

let tree = Node (Leaf 2, Node (Leaf 3, Leaf 4))
let () = Printf.printf "%b\n"
Qcheck_predicate_left_leaves is_even tree)

Passes test!

13

Proof Assistants

Proof Assistants for Verification

Proof Engineer Proof Assistant

Program

SpeC|ﬁcat|on

Proof

li l

Proof Assistants for Verification

Proof Engineer Proof Assistant

Program

SpeC|ﬁcatlon

Proof

g
|

Proof Assistants for Verification

Proof Engineer Proof Assistant

Program

SpeC|ﬁcat|on

Proof

g
|

Proof Assistants for Verification

Proof Engineer Proof Assistant

() Program
g Specification
N |Fa
)

@ Proof >
T p—
- v

Proof Assistants for Verification

Proof Engineer Proof Assistant

() Program
g Specification
N |Fa
)

l@’ Proof >
-
v

16 Hours Later ...

Proof Assistants for Verification

nar *EXP_COM(]
char *RV_TIME()

int summary(

{
char *str = |
st board *board = 2t St
int ret = 9§

char *ptr_Shutterceusss

Compilers

Machine Learning
Systems Operating Systems Quantum Optimizers

Talia Ringer, Karl Palmskog, llya Sergey, Milos Gligoric and Zachary Tatlock (2019),
QED at Large: A Survey of Engineering of Formally Verified Software, Foundations
and Trends in Programming Languages: Vol. 5, No. 2-3, pp 102-281.

20

Proof Assistants for Math

April 29, 2024 - May 29, 2024 Period: 1 month ~
Overview

E——
23 Active issues

=
263 Active pull requests

f- 18 19 245 ©12 oM

Merged pull requests Open pull requests Closed issues New issues

Excluding merges, 145 authors have pushed 634 commits 400
to master and 4,638 commiits to all branches. On master, ‘
3,248 files have changed and there have been 76,129

additions and 50,531 deletions.

200 [N N B

RN U TR

g~ 18 Pull requests merged by 4 people

https://qithub.com/leanprover-community/mathlib4/pulse/monthly

https://github.com/leanprover-community/mathlib4/pulse/monthly

It's still hard to write proofs.

22

Proof automation makes it
easier to develop and
maintain formal proofs
using proof assistants.

Traditional automation

Symbolic automation

Symbolic automation:

+ predictable

+ dependable

+ understandable

- limited In scope

- takes expertise to extend

Neural automation:

- unpredictable

- not dependable

- not understandable

+ not very limited in scope

+ can take little expertise to extend

A

Best of both worlds?

+ predictable

+ dependable

+ understandable

+ not very limited in scope

+ can take little expertise to extend

A
Though proof assistants
have come a long way,
they are still hard for most

people to use. We can
make this easier.

A

Though proof assistants
have come a long way,
they are still hard for most
people to use. We must
make this easier, now.

We Must Make Proofs Easier, Now

true ...

We Must Make Proofs Easier, Now -

let rec check_predicate_left_leaves predicate tree =
et rec aux is_left = function

Leaf x -> if is_left then predicate x else true

Node (left, right) -> (aux true left) && (aux false right)
In aux true tree

let tree = Node (Leaf 2, Node (Leaf 3, Leaf 4))
let () = Printf.printf "%b\n"
Qcheck_predicate_left_leaves is_even tree)

Passes test!

32

We Must Make Proofs Easier, Now

Proof Engineer Proof Assistant

() Program
g Specification
N |Fa
)

l@’ Proof >
B
v

16 Hours Later ...

We Must Make Proofs Easier, Now

Proof Engineer Proof Assistant

() Program

g Specification -
)

1. Proof Assistants

2. Symbolic Automation
3. Neural Automation
4. Building Bridges

5. Opportunities

1. Proof Assistants

2. Symbolic Automation
3. Neural Automation
4. Building Bridges

5. Opportunities

Proof Engineer Proof Assistant

ﬂ — .
Specification
ﬂ <>

G Proof o
ﬂ ‘
v

Proof Assistants (Part 1 of 5)

List Zip Preserves Length

Proof Assistant

n =

Zip preserves

N [
»
\ Proof ey
v

Proof Assistants (Part 1 of 5)

- \
List Zip Preserves Length //yf

Proof Assistant

n =

Zip preserves

N [
»
\ Proof ey
v

Proof Assistants (Part 1 of 5)

Coq (CIC)

n =

Zip preserves

N[
>
\ Proof o
v
| pum—]

Proof Assistants (Part 1 of 5)

Lean (CIC + UIP)

!73 -

Zip preserves

\ Proof o
v
EQ . -

Proof Assistants (Part 1 of 5)

Cubical Agda (Cubical)

!73 -

Zip preserves

\ Proof o
v
EQ . -

Proof Assistants (Part 1 of 5)

Isabelle/HOL (HOL)

!73 -

Zip preserves

\ Proof o

Proof Assistants (Part 1 of 5)

Coq

n =

Zip preserves

N[
>
\ Proof o
v
| pum—]

Proof Assistants (Part 1 of 5)

List Zip Preserves Length

Inductive list T =
| nil ; listT
lcons: T —listT —listT

Proof Assistants (Part 1 of 5) _

List Zip Preserves Length

Inductive list T :=
| nil ; listT
lcons: T —listT —listT

Proof Assistants (Part 1 of 5) _

List Zip Preserves Length

Inductive list T :=
| nil : listT (*[] %)
lcons: T —listT —listT

Proof Assistants (Part 1 of 5) _

List

Inductive list T :=
| nil : listT
lcons : T — listT

1
82—

Proof Assistants (Part 1 of 5) _

List

Inductive list T ;=
| nil : listT
lcons: T — listT — listT

a8 8

Proof Assistants (Part 1 of 5) _

List Length

Inductive list T :=
|nil :list T (*[]%)
lcons: T —listT—listT (*1:1%)

length : list T — nat

i I
It

e N
i I S
- //v C

Proof Assistants (Part 1 of 5) _

List Zip
Coq

n =

Zip preserves

N[
>
\ Proof o
v
| pum—]

Proof Assistants (Part 1 of 5)

List Zip

Modified from hs-to-coq

Fixpoint zip {A B} (11 : list A) (12 : list B)

a8
a—a—a

Proof Assistants (Part 1 of 5) _

List Zip

Modified from hs-to-coq

Fixpoint zip {A B} (I1 : list A) (12 : list B) : list (A * B)

Proof Assistants (Part 1 of 5) _

List Zip

Modified from hs-to-coq

Fixpoint zip {A B} (I1 : list A) (12 : list B) : list (A * B)

Proof Assistants (Part 1 of 5) _

List Zip

Modified from hs-to-coq

Fixpoint zip {A B} (I1 : list A) (12 : list B) : list (A * B)
match I1, |2 with

111, -->1]
| [1->11

Proof ASS|stants (Part 1 0of 5) _

List Zip

Modified from hs-to-coq

Fixpoint zip {A B} (I1 : list A) (12 : list B) : list (A * B)
match I1, |2 with
[—->1]

s> 1]
h1:1l1,h2 ::tl12 -> (h1, h2)
end.

E—>H—>ﬂ

l—>ﬂ

Proof Assistants (Part 1 of 5) _

List Zip

Modified from hs-to-coq

Fixpoint zip {A B} (I1 : list A) (12 : list B) : list (A * B)
match I1, |2 with

[l _->1]

[>T
h1:tl1,h2 ::tl12 -> (h1, h2) :: (zip tI1 t12)

end.

Proof Assistants (Part 1 of 5) _

List Zip Preserves Length
Coqg

Us

Zip preserves

\ length /
| e
\ Proof >
v
| p—

Proof Assistants (Part 1 of 5)

List Zip Preserves Length

Theorem zip_preserves_length :
Vv {A B} (11 : list A) (12 : list B),

Proof Assistants (Part 1 of 5) _

List Zip Preserves Length

Theorem zip_preserves_length :
v {A B} (11 :list A) (12 : list B),
length |11 = length 12 —

length = 3

length = 3

Proof Assistants (Part 1 of 5) _

List Zip Preserves Length

Theorem zip_preserves_length :
v {A B} (I1: list A) (12 : list B),
length |1 = length [12 —
length (zip 11 12) = length I1.

length = 3

Proof Assistants (Part 1 of 5) _

List Zip Preserves Length \

Theorem zip_preserves_length :
v {A B} (I1: list A) (12 : list B),
length |1 = length [12 —
length (zip 11 12) = length I1.

length = 3

Proof Assistants (Part 1 of 5) _

List Zip Preserves Length

Theorem zip_preserves_length :
v {A B} (I1: list A) (12 : list B),
length (zip 11 12) = min (length I1) (Ilength 12).

length = 3

Proof Assistants (Part 1 of 5) _

List Zip Preserves Length
Coqg

n =

Zip preserves

length >

Goal

Proof Assistants (Part 1 of 5)

List Zip Preserves Length
Coqg

n =

Zip preserves

length >

Goal

4 D A(
9 B —
/ \Q _\ O 47

Proof Assistants (Part 1 of 5)

List Zip Preserves Length e “/’///%

@Proof
-
CI - !

Goal

Us Coq

Proof Assistants (Part 1 of 5)

Proof Assistants (Part 1 of 5)

2. Symbolic Automation
3. Neural Automation

4. Building Bridges

5. Opportunities

4 | WO,
o.' '_‘. ‘.°

Proof Automation

(The kind you're used to.)

Symbolic Automation (Part 2 of 5) .

Example: Tactics

Symbolic Automation (Part 2 of 5) ,

Example: Tactics
Coqg

n =

Zip preserves

length >

Goal

Symbolic Automation (Part 2 of 5)

Example: Tactics
Coqg

n =

Zip preserves

length >

Goal

Symbolic Automation (Part 2 of 5)

Example: Tactics A& ///%

Symbolic Automation (Part 2 of 5)

Example: Tactics A& ///%

Symbolic Automation (Part 2 of 5)

Example: Tactics % / ///%

prove the
base case

@ N Subgoal

Us

Symbolic Automation (Part 2 of 5)

Example: Tactics % '//////%

prove the
base case

@ N Subgoal

Us

Symbolic Automation (Part 2 of 5)

Example: Tactics e ///%

now the
hext case

@ N Subgoal

Us

Symbolic Automation (Part 2 of 5)

Example: Tactics Wl //%

&

Us

Symbolic Automation (Part 2 of 5)

Example: Tactics @ s ///%

Symbolic Automation (Part 2 of 5)

Example: Tactics e ///%

Symbolic Automation (Part 2 of 5)

Example: Tactics

\
¢

Us

Symbolic Automation (Part 2 of 5)

Example: Tactics

¢

Us

Symbolic Automation (Part 2 of 5)

Example: Tactics

Symbolic Automation (Part 2 of 5)

Symbolic Automation (Part 2 of 5)

Symbolic Automation (Part 2 of 5)

List Zip Preserves Length

intros T1 T2 11. induction 1;! as [|t; t1; IHt14].
- auto.?
- intros 12. induction 12 as [|t, tlp, IHtl,].
+ intros H. auto.*
+ intros H. simpl. rewrite IHtl;; auto.®

1=l

fun (T; Tp : Type) (17 : list T1) (1 : list Tp) =>
list_rect®! (fun (1; : list Ty) => ...)
(fun (1 : 1list Tp) _ => eq_refl)?

(fun (tq : Ty) (813 ¢ List Ty) (THEL; : <) (Ao : list Tp) =>
listirect® (fun (1 : list Tp) => ...)
(fun (H : ...) => eq_sym H)*
(fun (tp : T7) (tlp : list Tp) (IHtly : ...) =>
fun (H : ...) => eq_rect_r ... eq_refl (IHtl; ...)%)
1,3)
Tt

2. 7

Symbolic Automation (Part 2 of 5)

List Zip Preserves Length

induction 12%

Symbolic Automation (Part 2 of 5)8

List Zip Preserves Length

intros 12. induction 123 as [|t, tl, IHtl,].
+ intirosa H. fanto:!
+ intros H. simpl. rewrite IHtl;; auto.®

Induction => Induction Principles

list_rect® (fun (1, : list Tp) => ...)
(fun (H : ...) => eq_sym H)*
(fun (t2 : T7) (tlp : list Tp) (IHtl, : ...) =>
fun (H : ...) => eq_rect_r ... eq_refl (IHtl; ...)®)
1,%)

Symbolic Automation (Part 2 of 5)

88

Kinds of Automation

Tactics

Symbolic Automation (Part 2 of 5) .,

Kinds of Automation

Tactics

Reflection

Custom proof modes
Proof procedures
Plugins

Proof repair
Hammers

Symbolic Automation (Part 2 of 5) ,

A

This automation can do
basically anything, yet still
preserve correctness.

Symbolic Automation (Part 2 of 5) ,

De Bruijn Criterion

Symbolic Automation (Part 2 of 5) ,

A

< Checking the Proof

Producing the Proof e

Symbolic Automation (Part 2 of 5) ,

.

< Checking the Proof

Producing the Proof e

Symbolic Automation (Part 2 of 5) .,

.

S Checking the Proof
Tactics AR -
Producing the Proof Tho

Symbolic Automation (Part 2 of 5) .,

(%\

< Checking the Proof

Tactics ~

Domain-Specific Heuristics TS ~

Producing the Proof e

Symbolic Automation (Part 2 of 5) .,

Tactics ~

Domain-Specific Heuristics TS ~

Proof Transformations RN

Producing the Proof e

Symbolic Automation (Part 2 of 5) .

Tactics ~

Domain-Specific Heuristics TS ~

~
~
~

Proof Transformations RN

~
~

Producing the Proof scaryprograms ™~ <

~
~

Symbolic Automation (Part 2 of 5) .,

A

S Checking the Proof

Tactics ~

Domain-Specific Heuristics S~ ~

~
~
~

Proof Transformations RN

~
~

Producing the Proof scaryprograms ~~ <

~
~

Symbolic Automation (Part 2 of 5) ,

.

< Checking the Proof

~
~

S Small & Human-Readable Logic/Type Checker

~

~
~
~
=~ ~
Tactics ~
~
~
~

Domain-Specific Heuristics S~ ~

~
~
~

Proof Transformations RN

~
~

Producing the Proof scaryprograms ~~ <

~
~

Symbolic Automation (Part 2 of 5)

100

A

S Checking the Proof

S Small Logical Kernel

Tactics ~

Domain-Specific Heuristics S~ ~

~
~
~

Proof Transformations RN

~
~

Producing the Proof scaryprograms ~~ <

~
~

Symbolic Automation (Part 2 of 5) ,

A
With de Bruijn, as long as

you don't touch the kernel,
your automation is safe.

Symbolic Automation (Part 2 of 5) ,

A
With de Bruijn, as long as

you don't touch the kernel,
your automation is safe.”

" If your specification is OK, your kernel has no bugs,
and you don't assume contradictory or false axioms.

Symbolic Automation (Part 2 of 5) ,,

Symbolic automation:

+ predictable

+ dependable

+ understandable

- limited In scope

- takes expertise to extend

Symbolic Automation (Part 2 of 5) .,

Symbolic proof repair:
+ predictable

+ dependable

+ understandable

- limited In scope

- takes expertise to extend

Symbolic Automation (Part 2 of 5) .

xample: Proof Repair

Ornaments for Proof Reuse in Coq

Talia Ringer

University of Washington. USA
tringerfics. washington.edu
Nathaniel Yazdani
University of Washington, USA

nyazdani@es washington.edu

PROOF REPAIR

Talia Ringer

Chair of the Supervisory Committee:
Dan Grossman
Computer Science & Engineering

The days of verifying only toy programs are long gone
decades have marked a new era of verification at scale, b
guarantees to large and critical systems—an era of prg
Proof engineering is for verified systems what software |
for unverified systems. Still, while proof engineering—
engineering—is about both development and maintenany
engineering technologies so far have focused on develo

it comes to mai ® i
behind softwar P D I e s I s

This thesis i1 _ R cr---ch
ing verified systems. Proof repair reimacinec tha auta

engineers typically use to interactivel
machine-checked proof. When a syste

Adapting Proof Automation to Adapt Proofs

Talia Ringer
University of Washington, USA

John Leo
Halfaya Research, USA

Abstract

We extend proof automation in an interactive theorem prover
to analyze changes in specifications and proofs. Our approach
leverages the history of changes to specifications and proofs
to search for a patch that can be applied to other specifica-
tions and nraofs that need ta change in analogons wavs

Nathaniel Yazdani
University of Washington, USA

Dan Grossman
University of Washington, USA

the search

)) “le.

This in tur to
““CPP 2018

Despite is-

tants is brivuc. sveu a i Cuange w a uctsuuun s uie-
orem can break many dependent proofs. This is a major
ants based

10w proofs,
stead, it is

proof about the system, traditional aut(5 with sup-
John Leo proof from scratch. Proof repair, in ¢ . . tions, and
Halfaya Research, USA tomation: it determines how the systel Proof Repalr across Type Equlvalences “,’,’,llj-:,‘:

leoGihalfaya.org information to help fix the broken proc

S 4 A Talia Ringer RanDair Porter Nathaniel Yazdani bn that ac-
Dan Grossms Proof repair in this thesis works by co University of Washington University of Washington Northeastern University + program-
an Grossman : : : e Tk =,) E
v gt Q@ algorithms with program transformatiol : ? /
University of Washington, USA tringer@cs.washington.edu randair@uw.edu yazdani.n@husky.neu.edu

ing and the transformations operate ow

djg@cs.washington.edu . -
I8 proofs called proof terms. Thanks to the John Leo Dan Grossman
S A 5 © Halfaya Research University of Washington
Abstract differencing and the transformations ¢ "USA " USA
strac . F A 7
results in dependent type theory. For ex leo@halfaya.org djg@cs.washington.edu
Ornaments express relations between inductive types with the same in¢ ternalizes univalent transport from hon Apsiract 1. Introdiiction
implement fully automatic proof reuse for a particular class of ornaments in{ novel transformations over equalities t¢ e describe a new approach to automatically repairing bro- Program verification with interactive theorem provers has
how such a tool can give programmers the rewards of using indexed inductive This approach is realized inside of a ken proofs in the Coq proof assistant in response to changes come a long way since its inception, especially when it comes
. o A « 3 A ~ . . . n types. Our approach combines a configurable proof term to the scale of programs that can be verified. The selL4 [21
away many of the costs. The plugin works directly on Coq code; it is the fi Coq proof assistant. Case studies show | YPes: “Ur aPPIBACh FOIINCS a COIE able proof ters 2 L e BN L g SR L e Y e e 21]
: A : ! ; ; transformation with a decompiler from proof terms to sug- verified operating system kernel, for example, is the effort
for a non-embedded dependently typed language. It is also the first tool tg use that this proof repair tool suite can gested tactic scripts. The proof term transformation imple- of a team of proof engineers spanning more than a million
ornaments: To lift a function or proof, the user must provide only the souri on real proof developments. ments transport across equivalences in a way that removes lines of proof, costing over 20 person-years. Given a famous
references to the old version of the changed type and does 1977 critique of verification [12] (emphasis ours):

type. and the source function or j of the math e e

ornaments, our approach produces II I P 201 911'1111.\ than a more general approach

to proof reuse in Coq.

not rely on axioms beyond those Coq assumes.

We have implemented this approach in Pumpkix Pi, an
extension to the Puspkin Parcu Coq plugin suite for proof
repair. We demonstrate Pumpkin Pi’s flexibility on eight
case studies, including supporting a benchmark from a user
study, easing development with depandant fmac novtine we conld arane that, over 40 years, either verification has

functions and proofs between unary esearchers have become more fanatical.
snd svppustiog n indutral proof e P I D I 202 1 all has changed (emphass sl oursk
between Coq and other verification t

A sufficiently fanatical researcher might be will-
ing to devote two or three years to verifying a
significant piece of software if he could be as-
sured that the software would remain stable.

programs need to be maintained

P . MG 7 TR [y WP 2 = and modifiedThere is no reason to helieve that

ymbolic Automation (Part 2 of 5

Example: Proof Repair (PUMPKIN Pi)

PROOF REPAIR

Talia Ringer

Chair of the Supervisory Committee:
Dan Grossman
Computer Science & Engineering

The days of verifying only toy programs are long gon
decades have marked a new era of verification at scale, bi
guarantees to large and critical systems—an era of pr
Proof engineering is for verified systems what software
for unverified systems. Still, while proof engineering
engineering—is about both development and maintenan
engineering technologies so far have focused on develo
it comes to mai
behind softwar P h D T h es I s

This thesis it ___ -
ing verified systems. Proof repalr reimaecinoc “m ank
engineers typically use to interactivel
machine-checked proof. When a syste
proof about the system, traditional aut(
proof from scratch. Proof repair, in
tomation: it determines how the systel
information to help fix the broken prog

Proof Repair across Type Equivalences

S 4 _ Talia Ringer RanDair Porter Nathaniel Yazdani

Proof repair in this thesis works by co University of Washington University of Washington Northeastern University
algorithms with program transformatiol UsA USA UsA
o dibatnsfnradtions cpueits ol tringer@cs.washington.edu randair@uw.edu yazdani.n@husky.neu.edu

1S S 1
proofs called proof terms. Thanks to the John Leo Dan Grossman
b : : z Halfaya Research University of Washington

differencing and the transformations ¢ OSA A

results in dependent type theory. For ex leo@halfaya.org djg@cs.washington.edu

ternalizes univalent transport from hon Apstract 1 Introduction

novel transformations over equahnes € We describe a new approach to automatically repairing bro- Program verification with interactive theorem provers has

This appmach is realized inside of a ken proofs in the Coq proof assistant in response to chfmges come a long way since its inception, especially when it comes

COq pl’OOf assistant. Case studies showl in types. Our approach combines a Fox\hgurable proof term to the scale of programs that can be verified. The seL4 [21]

S e PER Y transformation with a decompiler from proof terms to sug- verified operating system kernel, for example, is the effort

use that this proof repair tool suite can gested tactic scripts. The proof term transformation imple- of a team of proof engineers spanning more than a million

on real proof developments. ments transport across equivalences in a way that removes lines of proof, costing over 20 person-years. Given a famous
references to the old version of the changed type and does 1977 critique of verification [12] (emphasis ours):

| not rely on axioms beyond those Coq assumes.

We have implemented this approach in Pumpkin Pi, an
extension to the Pumpkin Patcu Coq plugin suite for proof
repair. We demonstrate Pumpkin Pi’s flexibility on eight
case studies, including supporting a benchmark from a user
study, easing development with depandant hmac nartina we conld arene that, over 40 years, either verification has

functions and proofs between unary esearchers have become more fanatical.
and supporting an industrial proof er P I D I Z 0 Z 1 all has changed (emphasis still ours):
between Coq and other verification t programs need to be maintained

£ and modified.There is no reason to believe that

A sufficiently fanatical researcher might be will-
ing to devote two or three years to verifying a
significant piece of software if he could be as-
sured that the software would remain stable.

ymbolic Automation (Part 2 of 5

Example: Proof Repair (PUMPKIN Pi)

You have changed a
datatype, and now the
standard library is broken!

Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)

Inductive list T :=
nil list T \,'
lcons: T —listT — listT ‘

(* Repair all 451 functions & proofs: *)
Repair Module Old.list New.list in StdLib.

Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)

Inductive list T :=
lcons: T - listT — listT ,’
| nil : listT ‘

(* Repair all 451 functions & proofs: *)
Repair Module Old.list New.list in StdLib.

Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)

Inductive list T ;=
lcons . T — listT — listT
| nil : listT

L
N

(* Repair all 451 functions & proofs: *)
Repair Module Old.list New.list in StdLib.

451 functions & proofs,

25 seconds r

A

Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)

Traditional proof repair:

+ predictable
+ dependable

Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)

Predictable (Equivalences)

PUMPKIN Pi supports
any change described
by a type equivalence.

Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)

Predictable (Equivalences)

PUMPKIN Pi supports
any change described
by a type equivalence.

The Univalent Foundations Program. 2013. Homotopy

Type Theory: Univalent Foundations of Mathematics.
Institute for Advanced Studly.

Symbolic Automation (Part 2 of 5) .

Example: Proof Repair (PUMPKIN Pi)

Predictable (Equivalences)

— swap A
Old.list T New.list T
— _—

swap_back

Symbolic Automation (Part 2 of 5) _

Example: Proof Repair (PUMPKIN Pi)

Predictable (Equivalences)

— swap | —A
| :0ld.list T New.list T
— _—

swap_back (swap |)

Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)

Predictable (Equivalences)

— swap (swap_back) —™=a
Old.list T | :New.list T
W _——

swap |

Symbolic Automation (Part 2 of 5) .

Example: Proof Repair (PUMPKIN Pi)

Predictable (Equivalences)

— update A
old new
— ——

revert

Symbolic Automation (Part 2 of 5) _

Example: Proof Repair (PUMPKIN Pi)

Predictable (Equivalences)

+ \Coq + PUMPKIN / +

Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Predictable (Equivalences)
N

old type type .
\Coq PUMPKIN /

o"‘;@_-_}'o

Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)

Predictable (Equivalences)

—
old type -— type
~ \Coq+PYJMPK|N / ~
b

:
D)

)
I
]

old function function Coq

or proof or proof
{ <

Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)

Predictable (Equivalences), Dependable

PUMPKIN Pi is
flexible & useful
for real scenarios.

Symbolic Automation (Part 2 of 5) ,

Example: Proof Repair (PUMPKIN Pi)

Predictable (Equivalences), Dependable

Unary to binary (classic benchmark)

Modifying PL (user study)

Extending PL (user study)

Adding indices (ornaments)

Factoring constructors (reviewer)

Permute hypotheses (type theorist)

Vector to finite set (type theorist)

OO O ©

Industrial use (mixed methods)

Symbolic Automation (Part 2 of 5)

123

Example: Proof Repair (PUMPKIN Pi)

Symbolic proof repair:
+ predictable

+ dependable

+ understandable

Symbolic Automation (Part 2 of 5) .,

Example: Proof Repair (PUMPKIN Pi)

Symbolic proof repair:

+ predictable

+ dependable

+ understandable” (for type nerds)

Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)

Understandable® (Transport as a Transformation)

Old Proof Proof

Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)

Understandable® (Transport as a Transformation)

Old Proof Proof

Symbolic Automation (Part 2 of 5) .

Example: Proof Repair (PUMPKIN Pi)

Understandable® (Transport as a Transformation)

~ A
w“w_.

Transport: Rewriting
across Equivalences

The Univalent Foundations Program. 2013. Homotopy
Type Theory: Univalent Foundations of Mathematics.
Institute for Advanced Studly.

Symbolic Automation (Part 2 of 5) ,

Example: Proof Repair (PUMPKIN Pi)

Understandable® (Transport as a Transformation)

Transport as a
Proof Term Transformation

Symbolic Automation (Part 2 of 5) ,

Example: Proof Repair (PUMPKIN Pi)

Understandable® (Transport as a Transformation)

For type nerds:
Deconstruct Equivalence
(Lambek’s Theorem)

Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)

Understandable® (Transport as a Transformation)

shape shape
of A of B
Vo-mmmmr update ~ " T "= a’
A B
v _________________
revert

Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)

Understandable® (Transport as a Transformation)

shape shape
of A of B
Vo-mmmmr update ~ " T "= a’
A B
v _________________
revert

Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)

Symbolic proof repair:

+ predictable

+ dependable

+ understandable” (for type nerds)
- limited In scope

- takes expertise to extend

Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)

Limited Scope (Quotient Equivalences)

—— WS NS BN S e
’—_— —_~

- 2 -
one list queue two list queue
- == ~
?

Carlo Angiuli, Evan Cavallo, Anders Mortberg,
and Max Zeuner. Internalizing Representation
Independence with Univalence. POPL 2021.

Symbolic Automation (Part 2 of 5)

134

Example: Proof Repair (PUMPKIN Pi)

Limited Scope (Setoid Equivalences)

- S - e o
==
—

’l
~—————————___

Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)

Limited Scope (Setoid Equivalences), Hard to Extend

One PhD student, |/}
onhe undergrad, !
one advisor,

2.5 years.

Is this sustainable?

2.5 years later...

Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)

Limited Scope (Setoid Equivalences), Hard to Extend

2.5 years later...

"While the reviewers agree that this
article tackles an interesting problem,
its contributions with respect to
pre-existing and related work appear
too incremental and limited in scope.’

Symbolic Automation (Part 2 of 5)

3. Neural Automation
4. Building Bridges
5. Opportunities

Neural automation:

- unpredictable

- not dependable

- not understandable

+ not very limited in scope

+ takes little expertise to extend

Neural Automation (Part 3 of 5) _

Important note:
Neural proof automation is not brand
new! It is just growing in popularity.

Neural Automation (Part 3 of 5)

rowing Interes

Baldur: Whole-Proof Generation and Repair
with Large Language Models

Emily First
University of Massachusetts

Ambherst, MA, USA
efirst@cs.umass.edu

Talia Ringer

University of Illinois Urbana-Champaign
IL, USA

tringer@illinois.edu

ABSTRACT

Markus N. Rabe
Google, Inc.
CA,

mrabe@google.com

Yuriy Brun
University of Massachusetts
Amherst, MA, USA
brun@cs.umass.edu

As a result, recent research has focused on automated proof syn

)

)

20

)

[cs.]

)

04.10370v:

PRoofster: Automated Formal Verification

Formally verifying software properties is a highly desirable but
Iabor-intensive task. Recent work has developed methods to auto-

for the Isabelle proof assistant. Hammers iteratively apply known

by training a model to predict one proof step

L] 2 Aug

Arpan Agrawal Emily First Zhanna Kaufman Tom Reichel at a time, and using that model to search through the space of mathematical facts using heuristics. The second is to use search
i s e i e possible proofs. This paper introduces a new method to automate _ based neural theorem provers, such as DeepHOL (4], GPT-f [66)
University of Tllinois University of University of University of Tllinois p ; pap i e s e e Do), S)
Urbana-Champaign, IL, USA Amberst, MA, USA Amherst, MA, USA Urbana- Champa:gn. IL, USA g ed an proofs, to 5 and ASTactic [96]. Given a partial proof and the current proof state
arpan2@illinois.edu efirst@cs.umass.edu umass.edu reichel3@i edu whole proofs for theorems at one, rather than one step at a time. (which consists of the current goal to prove and the list of known
We combine this proof gencration model with a finc-tuncd repair ~ 3ssumptions), these tools use neural networks to predict the next
model to repeir generated proofs, further incres individual proof step. They use the proof assistant to evaluate the
Shizhuo Zhang Timothy Zhou Alex Sanchez-Stern Talia Ringer As its main contributions, this paper demonstr: l:“l“’;“‘:‘ next proof steps, i“ Im:munn -nul» v;u(ﬂ vlr-ml \hh;‘
University of Illinois University of Ilinois University of Massachusetts University of Illinois bl ot i bt L oW oo (gt sl bworbe [84] et Vg lerer
Urbana Champmgn. IL, USA Urbana- Champalgn, IL, USA Amherst, MA, USA Urbana-Champaign, IL, USA scarch. (2) Giving the learned model additional context, such as a memory models (20), and language models with the transformer
e y du umass.edu ringer@illinois.edu prior failed)xrmﬂ:ltruu\pl and the ensuing crror message results Af'l'":*“;“ [2 IJ T ——
in proof repair and further improves automated proof generation. n this paper, we propose Baldur, a different, simpler approach to
Passport: Improving Automated Formal Verification Usin - (3) We establish a new state of the art for fully automated proof is. 3
p H p g g Yuriy Brun synthesis. We reify our method in a prototype, Baldur, and evaluate
.ge P it on a benchmark of 6,336 Isabelle/HOL theorems and their proofs.
Identifiers University of Massachusetts In addition to empirically showing the cffcctiveness of whole-proof
Amherst, MA, USA generation, repair, and added context, we show that Baldur im: remarkably cffective across a wide variety of applications, including
SANC . x ; brun@ecs.umass.edu proves on the statc-of the-art tool, Thor, by automatically gencrat- duestion answering, and text and code generation [7, 14] Here, we
ALEX SANCHEZ-STERN", University of Massachusetts Amherst, USA : & vootsforan additional 8.7% o the theorenme Together Baldus show their remarkable effetiveness for whole proof generation.
EMILY FIRST*, University of Massachusetts Amherst, USA ST e o 71 il e e T
TIMOTHY ZHOU, University of lllinois Urbana-Champaign, USA effective ‘;l:l E{‘]"f;'?'y Meanwhile, it took 11 person-years to write the proofs required el focartomiting formial esificatios k ::;;:;:::’J:;‘:;T{\ ;:“:E‘l_("‘f‘:‘:l"h::f‘ur;‘:;::“
: 5 qware quality. Verifying o verify the seL4 microkernel [17], which represents a tiny mers ar commtationally expensive search.
l IFM) sity] L 2 1 P
ZH,\NI\I\ KAIL' FMAN, Lnrl\ ersity of Massachusefts Amherst; ISA nll::?i‘:‘:ﬁ:lf:f:":iz:ﬂi fraction of the functionality of a full kernel. 1 repair task and demonstrate that
YURIY BRU\N University of Massachusetts Amherst, USA Coq, aiding the provess, Recent work has aimed to simplify the process of writing ; 1.\.:::::: ,;:::,‘x; it LLMs i
TALIA RINGER, University of Illinois Urbana-Champaign, USA 1 the synthesis of formal Proofs [2], [IGL lzi]y 193, 110], lM]Yb[]:Ii 123], [24], (30]. : 2 proof assistant's rror mesages
exists for practitioners. Some formal verification can even be fully automated via 3 spirically on a large benchmark that
Formally verifying system properties is one of the most effective ways of improving system quality, but d tool aimed :t assilslﬁl{g proof synthesis. For example, CoqHammer [4] uses a set u ° °
its high manual effort requirements often render it prohibitively expensive. Tools that automate formal Hoime o ey ot . of precomputed mathematical facts fo attempt to “hammer” z
verification, by learning from proof corpora to suggest proofs, have just begun to show their promise. These tally synthesize a formal O1t Proof. A ASTactic (30], P ot9001 (23], ol
x Factiv v ¢ 4 r f o R i Tl 5 X f & Whon it ic nmahla ta TacTok [71. Diva [6]. and Passoort [241 learn a predictive model g
tools are effective because of the richness of the data the proof corpora contain. This richness comes from Jodel 1o guide R, A" it vesis 0 s psmstscacn s s witss as cminns
the stylistic conventions followed by communities of proof developers, together with the powerful logical 14 m scra'fh Kimes s ong s e complr code el 17 parametes. By contras, xsin ools that use (LA o heoren
systems beneath proof assistants, However, this richness remains underexploited, with most work thus far) e m o ists for practi- .
focusing on architecture rather than on how to make the most of the proof data. wexample, of IPErvised Models:

In this paper, we develop Passport, a fully-automated proof-synthesis tool that systematically explores | i the above-mentioned search-based tools, all but one have neither

DunuNE g Large r rourn incpan wataset

how to most effectively exploit one aspect of that proof data: identifiers. Passport enriches a predictive Coq

mudel used lv\ pnmt synthesis le\ with I]uc:- new emodmg umh.uuxmx 1ux uk-nuhen um,un \mdlmldn Tom Reichel &

University of Illinois Urbana-Champaign, USA

TOPLAS Vol. 45, Issue 2:
° s Radiance Technologies, Inc., Huntsville, AL, USA

ormation » Andrew Touchet &

erall, our Radiance Technologies, Inc., Huntsville, AL, USA
- O Y y p p - y eading to

Andrew Gardner* &

Radiance Technologies, Inc., Huntsville, AL, USA

Talia Ringer* =
University of lllinois Urbana-Champaign, USA

5 Abstract

We introduce a new, large proof-repair dataset and benchmark suite for the Coq proof assistant. The

dataset is made up of Git commits from dozens of open-source projects with old and new versions of

definitions and proofs aligned across commits. Building this dataset was a significant undertaking,

highlighting a number of challenges and gaps in existing infrastructure. We discuss these challenges

and gaps, and we provide r community can address them
Our hope is to make it e o that machine-learning tools
for proofs will move to targ iitably across proof assistants.

2012 ACM Subject Classification Computing methodologies — Machine learning: Software and its

eural Automation (Part 3 of 5

First Project: Passport

PRoofster: Automated Formal Verification

Arpan Agrawal

University of Illinois

Urbana- Champaxgn IL, USA
arpan2 @i

inois.edu

Shizhuo Zhang
University of Ilinois

Urbana-Champaign, IL, USA Urbana-Champaign, IL, USA

Passport: Improving Automated Formal Verification Using .

Identifiers

ALEX SANCHEZ-STERN*, University of Massachusetts Amherst, USA
EMILY FIRST", University of Massachusetts Amherst, USA

TIMOTHY ZHOU, University of Illinois Urbana-Champaign, USA
ZHANNA KAUFMAN, University of Massachusetts Amherst, USA
YURIY BRUN, University of Massachusetts Amherst, USA

TALIA RINGER, University of Illinois Urbana-Champaign, USA

Formally verifying system properties is one of the most effective ways of improving system quality, but
its high manual effort requirements often render it prohibitively expensive. Tools that automate formal
verification, by learning from proof corpora to suggest proofs, have just begun to show their promise. These
tools are effective because of the richness of the data the proof corpora contain. This richness comes from
the stylistic conventions followed by communities of proof developers, together with the powerful logical
systems beneath proof assistants, However, this richness remains underexploited, with most work thus far
focusing on architecture rather than on how to make the most of the proof data.

In this paper, we develop Passport, a fully-automated proof-synthesis tool that systematically explores
how to most effectively exploit one aspect of that proof data: identifiers. Passport enriches a predictive Coq

mml:l used ln, pxuu synthesis I\ml\ with 1]11cc new ﬂlwdul-' muh.mmm lm ulmuhun L(lI:'L,UI‘v \\)quvuldx\
TOPLAS VO| 45, Issue 2:
°

ormation

No. 12, pp 1-30, 2023:::

University of

Emily First Zhanna Kaufman Tom Reichel
University of University of Illinois
Amberst, MA, USA Amberst, MA, USA Urbana- Champalg;u. IL, USA

efirst@cs.umass.edu umass.edu reichel: is.edu

Talia Ringer
University of Illinois
Urbana-Champaign, IL, USA
tringer@illinois.edu

Alex Sanchez-Stern
University of Massachusetts
Amberst, MA, USA
du umass.edu

Timothy Zhou
University of ITlinois

Yuriy Brun
University of Massachusetts
Amherst, MA, USA
brun@cs.umass.edu

fective but extremely Meanwhile, it took 11 person-years to write the proofs required
are quality. Verifying o verify the seL4 microkernel [17], which represents a tiny
h‘:‘}i‘:';s I;‘E"";““'Z fraction of the functionality of a full kernel.
0, mdni thi gm Recent work has aimed to simplify the process of writing
he synthesis ol' formal Proofs [2], [6], [7], [9], [10], [14], (1], [23], [24], (30].
xists for practitioners. Some formal verification can even be fully automated via
tool aimed at assisting proof synthesis. For example, CoqHammer [4] uses a set
:;"g"': 1;‘;‘;‘::‘_{;‘“;?“; of precomputed mathematical facts to attempt to “hammer”
Ty omibeame aowmal OUt @ pIoof. ASTactic [30], 23],
When it is unable to. TacTok [7], Diva [6], and Passpon 124] leam & predictive model
aigh tree from a corpus of exist
dg

al arch)
rt lati
tioners to use these Coq proof-synthesis tools. For example, of

the above-mentioned search-based tools, all but one have neither

Qmmmw

Tom Reichel &

University of Illinois Urbana-Champaign, USA
R. Wesley Henderson &

Radiance Technologies, Inc., Huntsville, AL, USA
Andrew Touchet &

Radiance Technologies, Inc., Huntsville, AL, USA
Andrew Gardner* &2

Radiance Technologies, Inc., Huntsville, AL, USA
Talia Ringer* &

University of Ilinois Urbana-Champaign, USA

33—

Baldur: Whole-Proof Generation and Repair
with Large Language Models

Emily First
University of Massachusetts
Amherst, MA, USA
efirst@cs.umass.edu

Talia Ringer
University of Illinois umm -Champaign

mnger@uune.s edu

ABSTRACT
Formally veriying softwase propesties is o highly desiable but
task. Recent work b thods to auto-
‘mate formal verification using proof assistants, such as Coq and
Tsabelle/HOL, e.g, by training a model to predict one proof step
at a time, and using that model to search through the space of
possible proofs. This paper introduces a new method to automate
formal verification: We use large language models, trained on natu-
ral language text and code and fine-tuned on proofs, to generate
whale proofs for theorems at once, rather than one step at a time.
‘We combine this proof generation model with a fine-tuned repair
model o repair generaied profs futher incrasing proving pover

Markus N. Rabe
Google, Inc.
CA,USA
mrabe@google.com

Brun
University of Massachusetts
Amherst, MA, USA
brun@cs.umass.edu

As a resul, recent research has focused on automated proof syn-
thesis, which can lead to fully automating formal verification.
There are two promising approaches for automating proof syn-
thesis. The first is to use hammers, such as Sledgehammer [64]
for the Isabelle proof assistant. Hammers iteratively apply known
‘mathematical facts using heuristics. The second is to use search-
based neural theorem provers, such as DeepHOL [4], GPT-f [66],
TacticZero [91], Lisa [34]. Evariste [42], Diva [20], TacTok [22],
and ASTactic [96]. Given a partial proof and the current proof state
(which consists of the current goal to prove and the list of known
assumptions), these tools use neural networks to predict the next
individual proof step. They use the proof assistant to cvaluate the
proof steps, which returns a new set of proof states.

paper time
dm.m and
techniques without ing costly

search. (2) Giving the learned model additional context, such as a
prior failed proof attempt and the ensuing error message, results
in proof repair and further improves automated proof generation.
(3) We establish a new state of the art for fully automated proof

Neural theorem provers rely on diverse neural architectures, such
as Wavenet [4, 84], graph neural networks (62], short long-term
‘memory models [20], and language models with the transformer
architecture [27, 66].

In this paper, we propose Baldur, a different, simpler approach to
proof synthesis. We show that using large language models (LLMs),
fine-tuned on proofs, can produce entire proofs for theorems. LLMs
are scaled-up transformer models trained on a large amount of text
data, including natural language and code, that have proven to be

dudi
7. 14]. Here, we

synthesis. We reify our method in a prototype, Baldur, and evaluate
i 4 Fene b lle/HOL the d their proofs.
In addit ly showing f whole proof
generation, repair, and added context, we show that Baldur im
proves on the tool, Thor, generat-

ing proofs for an additional 8.77% of the theorems. Together, Baldur
and Thor ean it of the theorems fully automatically. This
paper paves the way for new research into using large language
‘models for anhmulmg formal verification.

ESEC/FSE:2

quality software. For example, CompCert, a C compiler \rnfed

is s U b itous GCC
g
<o <

‘bitive. For example,
times as long as the compiler code tself [47].

ipervised Models:

taset

using the Bepiee theorem prover [81), was the only com-
LLVA

text and [
shww i semmackale lfctivencss foe whole prul gracraion

The main contributions of our work are:

* We develop Baldur, a novel method that generates
‘whole formal proofs using LLMs, without using ham-
‘mers or computationally expensive search.

f repair task and demonstrate that

Bakdis i e it el e kel gl
i art for theorem proving.

v of
erva [48], one with 8 billion parameters and anoMer with 62 billion
parameters. By contrast, existing tools that use (L)LMs for theorem

1+ We introduce a new, large proof-repair dataset and benchmark suite for the Coq proof assistant. The
15 dataset is made up of Git commits from dozens of open-source projects with old and new versions of
ant undertaking,
these challenges

1 definitions and proofs aligned across commits. Building this dataset was a signifi
v highlighting a mumber of challenges and gaps in cmmg infrastructure. We discus

1 and gaps, and we provide s for o
10 Our hope is to make it easi nilial)sets ay nai]
2 for proofs will move to targ th asiff that m

a1 2012 ACM Subject Cl —+ Machine learning; Software and its

t community can address them.
'so that machine-learning tools

uitably across proof assistants.

Computing

ural Automation (Part 3 of 5

First Project: Passport

Addition of real
numbers is
commutative

Next Tactic }

Neural Automation (Part 3 of 5)

First Project: Passport

Category Vocabulary
Indexing

forall r1 r2: R, Subword Sequence

Rplusr1r2=Rplusr2r1 422 Modeling

\ & Path Elaboration

Neural Automation (Part 3 of 5)

First Project: Passport

/

Proof State

\

Encoded
Proof State

100101110100
— | 011001001101

—_—

Core Model

4[Next Tactic]

Neural Automation (Part 3 of 5)

First Project: Passport

Neural automation:

+ not very limited in scope
+ takes little expertise to extend

Neural Automation (Part 3 of 5) _

First Project: Passport - Big Scope

e Yang and Deng 2019

e Mathematical formalizations, proven correct
programs, and Coqg automation libraries

e 123 open-source Coq projects

e Trained on 97 projects (57,719 theorems)

e Tested on 26 projects (10,782 theorems)

CoqGym
I

Neural Automation (Part 3 of 5)

First Project: Passport - Big Scope

We can prove 45% more theorems than before!

2000

1820

1740

1500
1259

1000

theorems proven

500

0

Neural Automation (Part 3 of 5)

First Project: Passport - Big Scope

Diversity brings even higher returns!
647% more theorems than the baseline!

2000 2000
179 2000
g B2 3 m 5 1500 -
(7] (4] o
2 1500 s 2 1500 .%) +105 +102 *161
3 1117 8 + ‘
é jo00 [967 972 % g 1000 § 10
5 5 2 500
Q [} —
< 500 £ 500 *
#* * 0 2 & oW o O
o o S P A0 @
\‘00 \)c,\ 6\‘0 2 “x ‘(\0\
G [s)
‘(@\\ 2 o B \N\\ \096 0 c;a\“” o “a\% \P~\\\ \\\?}3 *00“ 00(\9 c
,‘0‘*’5 Ry 6\\36 XO\O X 06\‘0 AL \\3(' \ K 0(\“ _\(\eé
Kon ,00 00«\“

(a) The impact of category vocabulary indexing (b) The impact of subword encoding on each (c) The impact of fully-qualified path encod-
on three identifier categories (without subwords of the categories of identifiers (with category ing of type constructors and global definitions
or paths): local variables, type constructors, and vocabulary indexing but without paths). (with category vocabulary indexing but without
global definitions. subwords).

Neural Automation (Part 3 of 5)

First Project: Passport - Easy to Extend

Some easy Python scripts on top of
someone else’s existing project
Parallelized work for different extensions
between me and five other authors
Undergraduate implemented most
challenging extension in an order of weeks
Scripts were simple and fun enough that |
got excited when writing one In between
drafting thesis chapters, ran into a couch,
and broke my big toe

Neural Automation (Part 3 of 5)

First Project: Passport

Language models:

- unpredictable

- not dependable

- not understandable

+ not very limited in scope

+ takes little expertise to extend

Neural Automation (Part 3 of 5) _

First Project: Passport - Confusion

e Somehow, the name of the user running the
training script impacted the file order, which
impacted the results of training a model on
identical data in an identical way

e We found a nondeterminism bug in Pytorch

e Some combinations of extensions worked
mysteriously poorly, even though all
together they helped

o Apparently this is just life with even small
LMs? s this life now? Help?

Neural Automation (Part 3 of 5)

More in the Paper!

PRoofster: Automated Formal Verification

Baldur: Whole-Proof Generation and Repair
with Large Language Models

Emily First Markus N. Rabe

University of Massachusetts Google, Inc.

Ambherst, MA, USA CA,USA

efirst@cs.umass.edu mrabe@google.com

Talia Ringer ‘uriy Brun

University of Illinois Urbana-Champaign University of Massachusetts

IL, USA Amherst, MA, USA
tringer@illinois.edu brun@cs.umass.edu

ABSTRACT

Fumuuy verifying software properties is a highly desirable but
task. Recent work b thods to auto-

‘mate formal verification using proof assistants, such as Coq and

Isabelle/HOL, e.g,, by training a model to predict one proof step

As a resul, recent research has focused on automated proof syn-
thesis, which can lead to fully automating formal verification.
There are two promising approaches for automating proof syn-
thesis. The first is to use hammers, such as Sledgehammer [64]
for the Isabelle proof assistant. Hammers iteratively apply known

Arpan Agrawal Emily First Zhanna Kaufman Tom Reichel at a time, and using that model to search through the space of ~ mathematical facts using heuristics. The second '; ‘]" use m['d;'
fnde o A i Piars .. eible proofs. This i R R based neural theorem provers, such as DeepHOL [4], GPT- [66),
University of Illinois University of University of University of Illinois e n To] o (44] Eviriats (B3] Dival [30) ek [24]-

Urbana- Champaugm IL, USA
arpan2 @i

Amberst, MA, USA Amberst, MA, USA Urbana- Champalg;u, IL, USA

formal verification: We use large language models, trained on natu-
ral language text and code and fine-tuned on proofs, to generate

and ASTactic [96). Given a partial proof and the current proof state
(which consists of the current goal to prove and the list of known

inois.edu efirst@cs.umass.edu umass.edu reichel edu whale proofs for theorems at once, rather than one step at a time.

We combine this proof generation model with a fine-tuned repair assumptions), these tools use neural networks to predict the next

. . L nwdri to repair generated proofs, further increasing proving power. individual proof step. They use the proof assistant to evaluate the
Shizhuo Zhang Timothy Zhou Alex Sanchez-Stern Talia Ringer paper time proof steps, which returns a new set of proof states.
dm. w S Neural theorem provers rely on diverse neural architectures, such

University of Illinois

Passport: Improving Automated Formal Verification Using .

University of ITlinois
Urbana-Champaign, IL, USA Urbana-Champaign, IL, USA

University of Massachusetts
Amherst, MA, USA
du .umass.edu

University of Illinois
Urbana-Champaign, IL, USA
tringer@illinois.edu

Yuriy Brun

is as effective as search-based techniques without requiring costly
search. (2) Giving the learned model additional context, such as a
prior failed proof attempt and the ensuing error message, results
in proof repair and further improves automated proof generation.
(3) We establish a new state of the art for fully automated proof
synthesis. We reify our method in a prototype, Baldur, and evaluate

as Wavenet (4, 84, graph neural networks (62], short long-term
‘memory models [20], and language models with the transformer
architecture (27, 6],

In this paper, we propose Baldur, a different, simpler approach to
proof synthesis. We show that using large language models (LLMs),
fine-tuned on proofs, can produce entire proofs for theorems. LLMs
are scaled-up transformer models trained on a large amount of text

o . ol e s et oty
Identifiers University of Massachusetts Ll it rmn,‘?wm,f data, ncluding natural anguage and code, ha have prove o be
Amherst, MA, USA generation, repair, and added context, we show that Baldur im- reisin y e H' d
o - : o g proves on the tool, Thor, generat- text 7. 14]. Here, we
ALEX SANCHEZ-STERN"*, University of Massachusetts Amherst, USA brun@cs umass.edu e L e

EMILY FIRST", University of Massachusetts Amherst, USA
TIMOTHY ZHOU, University of lllinois Urbana-Champaign, USA
ZHANNA KAUFMAN, University of Massachusetts Amherst, USA
YURIY BRUN, University of Massachusetts Amherst, USA

TALIA RINGER, University of Illinois Urbana-Champaign, USA

Formally verifying system properties is one of the most effective ways of improving system quality, but
its high manual effort requirements often render it prohibitively expensive. Tools that automate formal
verification, by learning from proof corpora to suggest proofs, have just begun to show their promise. These
tools are effective because of the richness of the data the proof corpora contain. This richness comes from
the stylistic conventions followed by communities of proof developers, together with the powerful logical
systems beneath proof assistants, However, this richness remains underexploited, with most work thus far
focusing on architecture rather than on how to make the most of the proof data.

In this paper, we develop Passport, a fully-automated proof-synthesis tool that systematically explores
how to most eﬂu-mclv exploit one aspect of that proof data: identifiers. Passport enriches a predictive Coq

synthesis I\ml\ with 1]11c= new mmdm-' muh.mmm lm ulmuhun L(ll:'L,UI‘v \\)quvuhu\

TOPLAS Vol. 45, Issue 2:

No. 12, pp 1-30, 2023:::

fective but extremely Meanwhile, it took 11 person-years to write the proofs required
are quality. Verifying o verify the seL4 microkernel [17], which represents a tiny
h‘:‘}i‘:';s I;‘E"";"“'Z fraction of the functionality of a full kernel.

0, mdni thi :E'm Recent work has aimed to simplify the process of writing
he synthesis ol' formal Proofs [2], [6], [7], [9], [10], [14], (1], [23], [24], (30].
xists for practitioners. Some formal verification can even be fully automated via
tool aimed at assisting proof synthesis. For example, CoqHammer [4] uses a set
€88 via proof sy'“'“f“' of precomputed mathematical facts to attempt to “hammer”
e eopert oral ol a proof. ile, ASTactic [30], 23],
When it s unable to5Tok [T}, Diva 6], and Passport [24] learna predicive model

h tree from a corpus of ems‘%
43 a

nonm to use these Coq proof-synthesis tools. For example, of
the above-mentioned search-based tools, all but one have neither

de
QAIGGIRwWI/.

Tom Reichel &

University of llinois Urbana-Champaign, USA
R. Wesley Henderson

Radiance Technologies, Inc., Huntsville, AL, USA
Andrew Touchet &

Radiance Technologies, Inc., Huntsville, AL, USA
Andrew Gardner* &2

Radiance Technologies, Inc., Huntsville, AL, USA
Talia Ringer* &

University of Ilinois Urbana-Champaign, USA

33—

and Thor ean prove 65.7% of the theorems fully automatically. This
paper paves the way for new research into using large language
‘models for automating formal verification.

ﬁ&ﬁtﬁ

quality software. For example, CompCert, a C compiler verified
using n.= Bepiee theorem S [sl . was the only com-
ubi LLVA

* bitive. For example,

times aslong as the compiler code itself [47].

ipervised Models:

taset

The main contributions of our work are:

* We develop Baldur, a novel method that generates
‘whole formal proofs using LLMs, without using ham-
‘mers or computationally expensive search.

f repair task and demonstrate that

:2

Bakdis i e it el e kel gl
i art for theorem proving.

v of
erva [48], one with 8 billion parameters and anoMer with 62 billion
parameters. By contrast, existing tools that use (L)LMs for theorem

1+ We introduce a new, large proof-repair dataset and benchmark suite for the Coq proof assistant. The
15 dataset is made up of Git commits from dozens of open-source projects with old and new versions of
1 definitions and proofs aligned across commits. Building this dataset was a significant undertaking,
v highlighting a mumber of challenges and gaps in cxmmg infrastructure. We discuss these challenges

1 and gaps, and we provide r s for
1 Our hope is to make it easi sets ay nayj
x for proofs will move to targ th asiff that i

2 2012 ACM Subject CI — Machine learning; Software and its

t community can address them.
'so that machine-learning tools

uitably across proof assistants.

Computing

ural Automation (Part 3 of 5

ince Then

04.10370v2 [cs.PL] 2 Aug 2022

Passport: Improving Automated Formal Verific
Identifiers

ALEX SANCHEZ-STERN*, University of Massachusetts Amherst, USA
EMILY FIRST*, University of Massachusctts Amherst, USA

TIMOTHY ZHOU, University of Illinois Urbana-Champaign, USA
ZHANNA KAUFMAN, University of Massachusetts Amherst, USA
YURIY BRUN, University of Massachusetts Amherst, USA

TALIA RINGER, University of Illinois Urbana-Champaign, USA

Formally verifying system properties is one of the most effective ways of impr¢
its high manual effort requirements often render it prohibitively expensive. To(
verification, by learning from proof corpora to suggest proofs, have just begun to §
tools are effective because of the richness of the data the proof corpora contain. 7
the stylistic followed by of proof devel together |
systems beneath proof assistants. However, this richness remains underexploited,
focusing on architecture rather than on how to make the most of the proof data.
In this paper, we develop Passport, a fully-automated proof-synthesis tool tha

PRoofster: Automated Formal Verification

Arpan Agrawal
University of Illinois

Emily First
University of

Zhanna Kaufman

Urbana-Champaign, IL, USA Ambherst, MA, USA

efirst@cs.umass.edu

University of
Amberst, MA, USA

Tom Reichel
University of Illinois
Urbana-Champaign, IL, USA

Baldur: Whole-Proof Generation and Repair
with Large Language Models

Emily First
University of Massachusetts
Ambherst, MA, USA
efirst@cs.umass.edu

Talia Ringer
University of Illinois Urbana-Champaign
IL, USA
tringer@illinois.edu

ABSTRACT
Formally verifying software properties is a highly desirable but
Iabor-intensive task. Recent work has developed methods to auto-

by training a model to predict one proof step
at a time, and using that model to search through the space of
possible proofs. This paper introduces a new method to automate

models, trained on natu:

ge ed on proofs, to gene
whole proofs for theorems at once, rather than one step at a time.

arpan2 @illinois.edu

Shizhuo Zhang Timothy Zhou
University of Illinois University of [Tlinois
Urbana-Champaign, IL, USA Urbana-Champaign, IL, USA

hizhuo2@illi illinoi

is.edu Z du

umass.edu
Alex Sanchez-Stern

University of Massachusetts
Amherst, MA, USA

edu

uma:

Yuriy Brun
University of Massachusetts
Amherst, MA, USA
brun@cs.umass.edu

Abstract—Formal verification is an effective but extremely
work-intensive method of improving software quality. Verifying
the correctness of software systems often requires significantly
more effort than implementing them in the first place, despite
the cxistence of proof assistants, such as Cog, aiding the process.
Recent work has aimed to fully automate the synthesis of formal
verification proofs, but little tool support exists for practitioners.
This paper presents PRoofster, a web-based tool aimed at assisting
developers with the formal verification process via proof synthesis.
Phoofster inputs a Coq theorem specifying a property of a
software system and attempts to automatically synthesize a formal
Proof of the correctness af hat mennarts Whan i ic nmahia fn
produce a proof, PRoofs

10del to guide
its synthesis explored, wi om scratch,
hint to enable PRoofster e m o ists for practi-
online at https://proofster

PRoofster is available at wuups.syousursaszaninima.

how to most effectively exploit one aspect of that proof data: identifiers. Passport enriches a predictive Coq .
model used by proof-synthesis tools with three new encoding mechanisms for identifiers: category vocabulary
indexing, subword seq deling, and path elab We compare Passport to three existing base toals .
s ic, e head-y/lh ompafo,
enfianced Tools autor y p. ’38% more theorents Man th tools toge! ®
e ements. Finally, together, these base tools and Passport togls enhanced with i
sgeaore the@lms an they bas®hols wj ssports s
No. 12, pp 1-30, ,
higher-quality software. -

Meanwhile, it took 11 person-years to write the proofs required

reichel

Talia Ringer
University of Illinois
Urbana-Champaign, IL, USA
tringer@illinois.edu

.edu
We combine this proof generation model with a fine-tuned repair
model to repair generated proofs. further incre:
As its main contributions, this paper demonstr
that: (1) Whole-proof generation using transformers s possible and
is as effective as search-based techniques without requiring costly
search. (2) Giving the learned model additional context, such as a
prior failed proof attempt and the ensuing error message, results

(3) We establish a new state of the art for fully automated proof
synthesis. We reify our method in a prototype, Baldur, and evaluate
it on a benchmark of 6,336 Isabelle/HOL theorems and their proofs.
In addition to empirically showing the effectiveness of whole-proof
generation, repair, and added context, we show that Baldur im:

proves on the st

e-of-the-art tool, Thor, by automatically generat
idditional 8.7% of the theorems. Together, Baldur
d Thor can prove 65.7% of the theorems fully auto

paper paves the way for new research into using larg
models for automating formal verification.

to verify the seL4 microkernel [17], which represents a tiny

fraction of the functionality of a full kernel.

Recent work has aimed to simplify the process of writing
proofs [2], [6], [7], [9], [10], [14], [11], [23], [24], [30].
Some formal verification can even be fully automated via

q
proof synthesis. For example, CogHammer [4] uses a set u
of precomputed mathematical facts to attempt to “hammer”
out a proof. ile, ASTactic (30], P (23],

TacTok [71. Diva [61. and Passport [241 learn a predictive model

the above
Dununga

Tom Reichel &

Batsve. rux camupic, SR s wse o cour

times as long as the compiler code itself [47),

ipervised Models:

or example, of

tioned search-based tools, all but one have neither
Large riuur nepan wataset

University of Illinois Urbana-Champaign, USA

R. Wesley Henderson &

Radiance Technologies, Inc., Huntsville,

Andrew Touchet &

Radiance Technologies, Inc., Huntsville, AL

Andrew Gardner* &

Radiance Technologies, Inc., Huntsville, AL,

Talia Ringer* =

AL, USA
L, USA

USA

University of Illinois Urbana-Champaign, USA

Abstract

We introduce a new, large proof-repair dataset and benchmark suite for the Coq proof assistant. The

dataset is made up of Git commits from dozens of open-source projects with old and new versions of

definitions and proofs aligned across cor

highlighting a number of challenges

and gaps, and we provide r

Our hope is to make it e

for proofs will move to tary

mmits. Building this dataset was a significant undertaking,
gaps in existing infrastructure. We discuss these challenges

community can address them.

o that machine-learning tools
iitably across proof assistants.

2012 ACM Subject Classification Computing methodologies — Machine learning: Software and its

ESEC/FSE 2023

Markus N. Rabe
Google, Inc.
CA,

mrabe@google.com

Yuriy Brun
University of Massachusetts
Amherst, MA, USA
brun@cs.umass.edu

As a result, recent research has focused on automated proof syn

< two promising approaches for automating proof syn

thesis. The first is to use hammers, such as S er [64)

for the Isabelle proof assistant. Hammers iteratively apply known
mathematical facts using heuristics. The second is to use search
based neural theorem provers, such as DeepHOL (4], GPT-f [66),
TacticZero [91), Lisa (34), Evariste (42], Diva (20], TacTok [22)
and ASTactic [96). Given a partial proof and the current proof state
(which consists of the current goal to prove and the list of known
assumptions), these tools use neural networks to predict the next
individual proof step. They use the proof assistant to evaluate the
proposed next proof steps, which returns a new set of proof states.
Neural theorem provers rely on diverse neural architectures, such
s Wavenet [, raph neural networks [62), short long-term
memory models [20], and language models with the transformer
architecture (27, 6]

remarkably effective across a wide variety of applications, including
question answeri [

ind text and code generation (7, 14]. Here, we

show their remarkable effectiveness for whole proof generation.

The main contributions of our work are:

 We develop Baldur, a novel method that generates
whole formal proofs using LLMs, without using ham
mere o commntationally expensive search

repair task and demonstrate that

spirically on a large benchmark that

Distinguished Paper

parameters. By contrast, existing tools that use (L)LMs for theorem

eural Automation (Part 3 of 5

04.10370v2 [CS.PL] 2 Aug 2022

econd Project: Proofster

Passport: Improving Automated Formal Verifi
Identifiers

ALEX SANCHEZ-STERN*, University of Massachusetts Amherst, USA
EMILY FIRST*, University of Massachusctts Amherst, USA

TIMOTHY ZHOU, University of Illinois Urbana-Champaign, USA
ZHANNA KAUFMAN, University of Massachusetts Amherst, USA
YURIY BRUN, University of Massachusetts Amherst, USA

TALIA RINGER, University of Illinois Urbana-Champaign, USA

Formally verifying system properties is one of the most effective ways of imp;
its high manual effort requirements often render it prohibitively expensive. Ti
verification, by learning from proof corpora to suggest proofs, have just begun to
tools are effective because of the richness of the data the proof corpora contain,
the stylistic followed by of proof developers, together
systems beneath proof assistants. However, this richness remains underexploite:
focusing on architecture rather than on how to make the most of the proof data.

In this paper, we develop Passport, a fully-automated proof-synthesis tool th

PRoofster: Automated Formal Verification

Emily First
University of

Arpan Agrawal
University of Illinois

Zhanna Kaufman

Urbana-Champaign, IL, USA
arpan2 @illinois.edu

Amberst, MA, USA
efirst@cs.umass.edu

Shizhuo Zhang Timothy Zhou
University of Illinois University of [Tlinois
Urbana-Champaign, IL, USA Urbana-Champaign, IL, USA
shizhuo2@illinois.edu ttz2 @illinois.edu

University of
Amherst, MA, USA

Tom Reichel
University of Illinois
Urbana- Champa:gn. IL, USA

umass.edu reichel
Alex Sanchez-Stern

University of Massachusetts
Amherst, MA, USA

umass.edu r

ger

Yuriy Brun
University of Massachusetts
Amherst, MA, USA
brun@cs.umass.edu

Abstract—Formal verification is an effective but extremely
work-intensive method of improving software quality. Verifying
the correctness of software systems often requires significantly
more effort than implementing them in the first place, despite
the existence of proof assistants, such as Cog, aiding the process.
Recent work has aimed to fully automate the synthesis of formal
verification proofs, but little tool support exists for practitioners.
This paper presents PRoofster, a web-based tool aimed at assisting
developers with the formal verification process via proof synthesis.
Phoofster inputs a Coq theorem specifying a property of a
software system and attempts to automatically synthesize a formal
Proof of the correctness af that neanarty Whon i ic unahla ta

PRoofster is available at uups./ yvusuwe Ao,

how to most effectively exploit one aspect of that proof data: identifiers. P

P

woy

model used by proof-synthesis tools with three new encoding mechanisms for identifiers: ca(egorv vocabulary
rec existing base toals

indexing, subword seq deling, and path elab We cumparc Passport to th

g n head- omp:
I IPLAS. VOI.:45, 15

Ices y pi 38% more t Ran the

ements. Finall i

together, these base tools and Passport too] enhance Wil
ore the®lkm5 an they Is W, «porl s
that ventptp pID
higher-quality soﬁware,

d

Talia Ringer
University of Illinois
Urbana-Champaign, IL, USA

illinois.edu

.edu

Meanwhile, it took 11 person-years to write the proofs required
to verify the seL4 microkernel [17], which represents a tiny

fraction of the functionality of a full kernel.

Recent work has aimed to simplify the process of writing
proofs [2], [6], [7], [9], [10], [14], [11], [23], [24], [30].
Some formal verification can even be fully automated via

proof synthesis.

of precomputed mathematical facts to attempt to “hammer”

For example, CogHammer [4] uses a set

out a proof. ASTactic (30], F

(23],

TacTok [71. Diva [61. and Passport [241 learn a predictive model

Tom Reichel &

University of Illinois Urbana-Champaign, USA

R. Wesley Henderson &

Radiance Technologies, Inc., Huntsville, AL, USA
Andrew Touchet &
Radiance Technologies, Inc., Huntsville, AL, USA

Andrew Gardner* &

Radiance Technologies, Inc., Huntsville, AL, USA

Talia Ringer* &
University of lllinois Urbana-Champaign, USA

Abstract

ists for practi-
or example, of
the above-mentioned search-based tools, all but one have neither

10del to guide
om scratch.

produce a proof, PRoofs
its synthesis explored, wi
online at htps://proofster

:aset

Baldur: Whole-Proof Generation and Repair
with Large Language Models

Emily First
University of Massachusetts
Ambherst, MA, USA
efirst@cs.umass.edu

Talia Ringer
University of Illinois Urbana-Champaign
IL, USA
tringer@illinois.edu
ABSTRACT
Formally verifying software properties is a highly desirable but
labor-intensive task. Recent work has developed methods to auto-

cation using proof assistants, such as Cog and

ct one proof step

that model to search through the space of

formal verific

ral la ex e-tuned on proofs o gene
bl proafsfor theoeers st ance ether e oaé scp at & e
We combine this proof generation model with a fine-tuned repair
model to repair generated proofs, further incre:
As its main contributions, this paper demonstre
that: (1) Whole-proof generation using transformers s possible and
is as effective as search-based techniques without requiring costly
search. (2) Giving the learned model additional context, such as a
prior failed proof attempt and the ensui

in proof repair and further improves automa
(3) We establish a new state of the art for fully automated proof
synthesis. We

ify our method in a prototype, Baldur,
of 6,336 Isabelle/HOL theorems and their proofs

In addition to empirically showing the effectivencss of whole-proof

it on a benchmar

generation, repair, and added context, we show that Baldur im:
proves on the state-of-the-art tool, Thor, by automatically generat
% of the theorems. Together, Baldur
ally. This

language

roofs for an additional 8.7

d Thor can prove 65.7% of the theorems fully auto

paper paves the way for new research into using larg
models for automating formal verification.

ESEC/FSE 2023

Markus N. Rabe

CA,USA
mrabe@google.com

Yuriy Brun
University of Massachusetts
Amherst, MA, USA

brun@cs.umass.edu

ult, recent research has focused on automated proof syn

for the Isabelle proof assistant. Hammers iteratively apply known
mathematical facts using heuristics. The second is to use search-
based neural theorem provers, such as DeepHOL (4], GPT-f [66),
TacticZero [91], Lisa [34], Evariste [42], Diva [20], TacTok [
and ASTactic [96). Given a partial proof and the current proof state
(which consists of the current goal to prove and the list of known
assumptions), these tools use neural networks to predict the next
individual proof step. They use the proof assistant to evaluate the
proposed next proof steps, which returns a new set of proof states.
Neualtheorem provers rely on diverse neuralarchitectures, such
cnet [, raph neural networks [62), short long-term
memory models [20], and language models with the transformer
architecture (27, 6]
In this paper, we propose Baldur, a differe

simpler approach to
models (LLMs),

fine-tuned on proofs, can produce entire proofsfor theorems. LLMs

proof synthesis. We show that using larg

‘amount of text

are scaled-up transformer models trained on a larg

and code, that have proven to be
remarkably effectiv

cross a wide varity of applications.including

question answering, and text and code generation (7, 14

show their remarkable effectiveness for whole proof generation.

The main contributions of our work are

 We develop Baldur, a novel method that generates
whole formal proofs using LLMs, without using ham
mere o commntationally expensive search

and demonstrate that

repair ta:

spirically on a large benchmark that

Distinguished Paper

Yimes aslong as the compiler code iself [47]

pervised Models:

We introduce a new, large proof-repair dataset and benchmark suite for the Coq proof assistant. The

dataset is made up of Git commits from dozens of open-source projects with old and new versions of

definitions and proofs aligned across commits. Building this dataset was a significant undertaking,

highlighting a number of challenges

gaps in existing infrastructure.

We discuss these challenges
community can address them.
o that machine-learning tools

and gaps, and we provide r
Our hope is to make it e
for proofs will move to targ i

iitably across proof assistants.

2012 ACM Subject Classification Computing methodologies — Machine learning: Software and its

parameters. By contras, existing toos that use (LILMs fo theorem

eural Automation (Part 3 of 5

Second Project: Proofster

sssssssssssssssssssssssssssssss

PRoofster

eeeeeeeeeeeeeeeeeeee

eee

Proofster it!

https://proofster.cs.umass.edu/ (web)
https://qithub.com/agrarpan/cog-synthesis (plugin)

Neural Automation (Part 3 of 5)

https://proofster.cs.umass.edu/
https://github.com/agrarpan/coq-synthesis

Second Project: Proofster

[ev: nat = Prop :=
| ev.B : ev @
| ev_SS (n: nat) (H: evn) : ev (S (S n)).

em ev_inversion: forall (n: nat),
evn —>

) (n=8) V (exist ,n=5(Sn') Aevn').

n:nat H:evn

n=08YV (exist :nat, n=S(Sn') Aevn')

n:nat H:evn

: nat,
evn -
n=8Y\ (exists :nat, n=S (Sn') Aevn') »
S(Sn)=8YV
(exist :nat, S(Sn)=S(Sn') Aevn')
t H1.

n:nat H:evn nB :nat HB : evnB HI : nB =8

S(Sng) =8V
(exis :nat, S(Sn@) =S (Sn') Aevn')

S(SnB) =8V
(exi :nat, S(SnB) =S (Sn') Aevn')

Uses https://github.com/cpitclaudel/alectryon

Neural Automation (Part 3 of 5)

https://github.com/cpitclaudel/alectryon

Third Project: PRISM

Passport: Improving Automated Formal Verific
Identifiers

ALEX SANCHEZ-STERN*, University of Massachusetts Amherst, USA
EMILY FIRST", University of Massachusctts Amherst, USA

TIMOTHY ZHOU, University of Hlinois Urbana-Champaign, USA
ZHANNA KAUFMAN, University of Massachusetts Amherst, USA
YURIY BRUN, University of Massachusetts Amherst, USA

TALIA RINGER, University of Illinois Urbana-Champaign, USA

Formally verifying system properties is one of the most effective ways of impr¢
its high manual effort requirements often render it prohibitively expensive. To(
verification, by learning from proof corpora to suggest proofs, have just begun to §
tools are effective because of the richness of the data the proof corpora contain. 7
the stylistic followed by ities of proof developers, together 1
systems beneath proof assistants. However, this richness remains underexploited,
focusing on architecture rather than on how to make the most of the proof data.
In this paper, we develop Passport, a fully-automated proof-synthesis tool tha

PRoofster: Automated Formal Verification

Arpan Agrawal Emily First Zhanna Kaufman Tom Reichel
University of Illinois University of University of University of Illinois
Urbana-Champaign, IL, USA Amberst, MA, USA Amberst, MA, USA Urbana- Champalg;u, IL, USA
arpan2@illinois.edu efirst@cs.umass.edu h umass.edu reichel .edu

Shizhuo Zhang Timothy Zhou Alex Sanchez-Stern Talia Ringer

University of Illinois
Urbana-Champaign, IL, USA
tringer@illinois.edu

University of Illinois University of [linois University of Massachusetts
Utbana-Champaign, IL, USA Urbana-Champaign, IL, USA Amherst, MA, USA
shizhuo2@illinois.edu edu umass.edu

Yuriy Brun
University of Massachusetts
Amherst, MA, USA
brun@cs.umass.edu

Abstract—Formal verification is an effective but extremely Meanwhile, it took 11 person-years to write the proofs required
work-intensive method of improving software quality. Verifying o verify the seL4 microkernel [17], which represents a tiny
k] mr;fec:tne';s o sof;ware sysu:!hns "m“u:e?i‘:":s I;\gmf;ﬂmiy fraction of the functionality of a full kernel.
zz‘:ﬂ;:nﬂ 0;.11’3}, :;‘;::"é 5“:(:0;, m:h:fg ;ﬁ P:E:-; Recent work has aimed to simplify the process of writing
Recent work has aimed to fully automate the synthesis of formal Proofs (2], [6], [7], 9], [10], [14], [11], [23], [24], [30].
verification proofs, but little tool support exists for practitioners. Some formal verification can even be fully automated via
This paper presents PRoofster, a web-based tool aimed at assisting proof synthesis. For example, CoqHammer [4] uses a set
developers with the formal verificaion process v proof synthesis. of brecomputed mathematical facts to attempt to “hammer”
PRoofster inputs a Coq theorem specifying a property of a e ile, ASTactic [30], 23]
software system and attempts to automatically synthesize a formal DRAE » AL >
it e Wnen “ §g--rre 4 TacTak I71 Thiva 1K1 and Pacenart 1741 Tearn a nredictive modal

produce a proof, PRoofst

its synthesis explored, i g :

hint to enable Pﬁoﬂfsﬁe:i themg
online at https://proofster.

PhRoofster is available at https:/youtu. bE/XQAI“lRfW]

Baldur: Whole-Proof Generation and Repair
with Large Language Models

Emily First
University of Massachusetts
Ambherst, MA, USA
efirst@cs.umass.edu

Talia Ringer
University of Illinois Urbana-Champaign
IL, USA
tringer@illinois.edu

ABSTRACT

Formally verify
labor-intensive task. Recent work has developed methods to auto-

¢ software properties is highly desirable but

mate formal verification using
Isabelle/HOL, e.g, by traini

at a time, and usin

roof assistants, such as Cog and

model to predict one proof step

possible proofs. This pap to automate

formal verification: We use

ing proving power.
utions, um paper demonstrates for the first time
that: (1) Whole-proof generation using transformers is possible and

is as effective as search-based techniques without requiring costly

search. (2) Giving the learned model additional context, such as a
prior failed proof attempt and the ensuing error message, results
in proof repair and further improves automated proof generation.
(3) We establish a new state of the art for fully automated proof
synthesis. We reify our method in a prototype, Baldur, and evaluate
it on a benchmark of 6,336 Isabelle/HOL theorems and their proofs.

ing proofs for an additional 8.7% of the theorems. Together, Baldur

and Thor can prove 65.7% of the theorems fully automatically. This

paper paves the way for new research into using large language

models for automating formal verification.

Markus N. Rabe
Google, Inc.
C
mrabe@

google.com

Yuriy Brun
University of Massachusetts
Amherst, MA, USA

brun@cs.umass.edu

As a result, recent research has focused on automated proof syn

ormal verification.

thesis, which can lead to fully automat
There are two promising approaches for automating proof syn

thesis. The first is to use hammers, such as Sledgehammer [64]

for the Isabelle proof assistant. Hammers iteratively apply known
mathematical facts using heuristics. The second is to use search-

based I theorem provers, such as DeepHOL (4], GPT-f [¢
TacticZero [91), Lisa [34], Evariste [42), Diva [20], TacTok [
and ASTactic [96]. Given a partial proof and the current proof state

(which consists of the current

to prove and the list of known
assumptions), these tools use neural networks to predict the next
individual proof step. They use the proof assistant to evaluate the
proposed next proof steps, which returns a new set of proof states.
Neural theorem provers rely on diverse neural architectures, such

Wavenet [4, 8
memory models [

). graph neural networks [62], short long-term

and language models with the transformer

ler approach to
e models (LLMs),

we propose Baldur, a different
We show that using large lan

roofs, can produce entire proofs for theorems. LLMs
are scaled-up transformer models trained on a large amount of text

data, including natural I and code, that have proven to be

remarkably effective across a wide variety of applications, including

question answering, and text and code generation (7, 1. Here, we

show their remarkable effectiveness for whole proof generation.

The main contributions of our work are:
© We develop Baldur, a novel method that generates
whole formal proofs using LLMs, without us

eommntationally expensive search.
repair task and demonstrate that

ESEC/FSE 20237 - -

q

Disting

mes as long as the compiler code tself [+

. Proof Repair Infrastructure for Supervised Models:

spirically on a large benchmark that

uished Paper

parameter. By contrat, existing toos that use (LILMs for theorem

Building a Large Proof Repair Dataset

how to most effectively exploit one aspect of that proof data: identifiers. Passport enriches a predictive Coq
model used by proof-synthesis tools with three new encoding mechanisms for identifiers: category vocabulary
indexing, subword sequence modeling, and path claboration. We compan‘ Passport to three existing base toals

than ic, Yoo o n head- omp: tic:
LAS Vol 45, Issue 2
iced Too! ly p! 38% more Ran the :‘too , WiTHo! l ©
ements. Plnall together, these base tools and Passport tools enhanced with identi
sgryore th@lkms dan the nIs W, ssport's
 that fﬂltpp 61?}"02

higher-quality software.

Tom Reichel &

University of Illinois Urbana-Champaign, USA

R. Wesley Henderson &
Radiance Technologies, Inc., Huntsville, AL, USA

Andrew Touchet &

Radiance Technologies, Inc., Huntsville, AL, USA
Andrew Gardner* &

Radiance Technologies, Inc., Huntsville, AL, USA
Talia Ringer* &

University of lllinois Urbana-Champaign, USA

04.10370v2 [cs.PL] 2 Aug 2022

Abstract

We introduce a new, large proof-repair dataset and benchmark suite for the Coq proof assistant. The

dataset is made up of Git commits from dozens of open-source projects with old and new versions of

definitions and proofs aligned across commits. Building this dataset was a significant undertaking,
highlighting a number of challenges and gaps in existing infrastructure. We discuss these challenges

and gaps, and we provide r community can address them
Our hope is to make it eas o that machine-learning tools
for proofs will move to targ iitably across proof assistants

2012 ACM Subject Classification Computing methodologies — Machine learning; Software and its

ural Automation (Part 3 of 5

Third Project: PRISM

Dataset for proof repair models for Cog
Actual proof repairs by proof engineers
Collaboration with Radiance

Massive infrastructure undertaking

o Building many different projects

o .. with many different Coq versions

o .. for many different commits

o ..and aligning data across commit pairs
e First repair model trained

e Evaluation WIP

Neural Automation (Part 3 of 5)

Baldur: Whole-Proof Generation and Repair
with Large Language Models

ourth Project: Baldur

Emily First Markus N. Rabe
University of Massachusetts Google, Inc.
Amherst, MA, USA. CA, USs#
efirst@cs.umass.edu mrabe@google.com
Talia Ringer Yuriy Brun
University of lllinois Urbana-Champaign University of Massachusetts
IL, USA Amherst, MA, USA
tringer@illinois.edu brun@cs.umass.edu
ABSTRACT As a result, recent research has focused on automated proof syn-

g software properties is a highly desirable but thesis, which can lead to fully automating formal verification

PRoofster: Automated Formal Verification

labor-intensive task. Recent work has developed methods to auto. There are two promi

thesis. The first is to use hai
for the Isabelle proof assistant. Hammers iteratively apply kn

automating proof syn.

mate formal verification using
Isabelle/HOL, e.g, by training

roof assistants, such as Coq and

model to predict one proof step

Arpan Agrawal Emily First Zhanna Kaufman Tom Reichel at a time, and using the space of mathematical facts using heuristics. The second is to use scarch
University of Illinois ~ University of University of University of Illinois el proo Tl e i i R el skt oy Al
Urbana-Champaign, IL, USA Amberst, MA, USA Amberst, MA, USA Urbana-Champaign, IL, USA : ¥ and ASTactic [96). Given a al proof and the current proof state
arpan2 @illneis.cdu cfirst@csumass.cdu ey R e e e s it
ated proofs, further i individual proof step. They use the proof assistant to evaluate the
Shizhuo Zhang Timothy Zhou Alex Sanchez-Stern Talia Ringer Asits m utions, this paper demor ‘\"fw;clt)! DEE gkl e v lml:‘rv{unh oo et o e i
University of lllinois University of [linois University of Massachusetts University of Illinois et (1) Wha "“:““l‘:‘;"j‘;‘i‘l;"l’:A‘;{‘l”‘ju“{j’:\‘i:‘;ij“;‘;r’;“““r‘l‘i‘i om0 g s bwore [84] et Vg lerer
Urbana-Champaign, IL, USA Urbana-Champaign, IL, USA Amherst, MA, USA Urbana-Champaign, IL, USA search. (2) Giving the learned model additional context, such as a memory models e models with the transformer
shizhuo2@illinois.edu illinois.edu umass.edu tringer@illinois.edu prirfaled proo atempt a the ensuing rror message, el architecture | .
1 1f1 tablish a new state of the art for fully automated proof . e models (LLMs)
Passport: Improving Automated Formal Verific Yorly Brun e il ook ot prodice i ook e e T
. S it on a benchmark of 6,336 Isabelle/HOL theorems and their proofs. ¢ scaled-up transformer models tra
Identifiers Universify of Massachusetts In addition to empirically showing the effectiveness of whole-proof 4ata, including natural
Amherst, MA, USA gencration, repee and added contess, we show tht Bildur . remarka
proves on the state-of-the-art tool, Thor, by automatically generat S -~
ALEX SANCHEZ-STERN", University of Massachusetts Amherst, USA Lrogcitn e B o e TR A T Bt ow the el e e o whals proof geaeratin.
EMILY FIRST", University of Massachustts Amherst, USA iyt i ety il [S
TIMOTHY ZHOU. University of Hlinois Urbana-Champaign, USA Abstract—Formal verification is an effective but extremely Meanwhile, it took 11 person-years to write the proofs required models for automating formal verification. & We develop Baldu, @ novel method that generaics
st Bseinans work-inensive method of improving software quality. Veriying (o verify the seL4 microkemnel [17], which represents a tiny whols ol s v 14, kol i i
ZHANNA KAUFMAN, University of M husetts erst, USA the correctness of software systems often requires significanly gy, (io of (he functionality of a full kernel 1 repair Sk s L thar
A e N more effort than implementing them in the first place, despite : o . e e ST
YURIY BRUN, University of Massachusetts Amherst, USA {he existence of proof assstants, such as Coq, aiding the process, Recent work has aimed to simplify the process of writing : et il
TALIA RINGER, University of Illinois Urbana-Champaign, USA Recent work has aimed to fully automate the synthesis of formal Proofs [2], [6], [7], [91, [10], [14], [11], [23], [24], [30]. : s¢ proof assistant's error messages
Verification proofs, but little tool support exists for practitioners, Some formal verification can even be fully automated via 5 pirically on a large benchmark that

Formally verifying system properties is one of the most effective ways of impr¢ This paper presents PRoofster, a web-based tool aimed at assisting proof synthesis. For example, CogHammer [4] uses a set u ° ° °
its high manual effort requirements often render it prohibitively expensive, To Scvelopers with the formal verification process via proof synthesis. - of procomputed mathematical facts to attempt to “hammer” :
high | i) L { Poofster inputs a Cog theorem specifying a property of a - e B 5
verification, by learning from proof corpora to suggest proofs, have just begun to s software system and attempts to automatically synthesize a formal 9% @ ll(’“’" TR & ICZAE 1]’ o E}d;l :
tools are effective because of the richness of the data the proof corpora contain,] Proof of the correctness of that property. When it is unable to - TacTok [7], Diva [6], and Passport [24] leam a predictive m - o M
he stylisti entions followed b Hee o ot dE el h produce a proof, PRoofs ace piler is more than three times as long as the compler code tself [47]
the stylistic conventions followed by communities of proof developers, together1 o synthesis explored, w guidg(be per
systems beneath proof assistants, However, this richness remains underexploited, hint to enable PRoofster thesize . PR . !
focusing on architecture rather than on how to make the most of the proof data. | online at https:/proofster Sunafic Ao d Proof Repair Infrastructure for Supervised Moaeis:
In this paper, we develop Passport, a fully-automated proof-synthesis tool tha Phoofsteris available at htps:fyoutu hesQAMGRIGY a1y .
how to most effectively exploit one aspect of that proof data: identifiers. Passport enriches a predictive Coq Bulld'ng a Large Proof Repa" Dataset
fnude! used by proof-synthesis looI§ with three new enco#mg n'mch;unsms for identifiers: mtegufy vocabnl:u)t' Tom Reichel &
indexing, subword sequence modeling, and path elaboration. We compare Passport to three existing base tools Usiwesity of ik 1rkan Chempaign, TAA

" han ic, Yoo fiodalolklin head-yMllh ompafio; tgguatic:
prifved @ }kﬁs hvﬁ of th%c ols. (2-!“ m spoy R .Wesley He.nderson = : .
enftancedools auto: ly prOVES 38% more theore &)zm the ‘ too CteT, without Phsspo Radiance Technologies, Inc., Huntsville, AL, USA
e ements. Finally, together, these base tools and Passport togls enhanced with identifier information Andrew Touchet &
(ol sgryore the@lms Jan the biggma bas@bols w; ssports s
s @ that Fentpt lay a sfnTR; iipru ;

erall, our Radiance Technologies, Inc., Huntsville, AL, USA
higher-quality software.

By contrast, existing tools that use (L)LMs for theorem

75

eading to » Andrew Gardner* &2
1 Radiance Technologies, Inc., Huntsville, AL, USA
u Talia Ringer* &

1 University of Illinois Urbana-Champaign, USA

04.10370v2 [cs.PL] 2 Aug 2022

33—

1+ We introduce a new, large proof-repair dataset and benchmark suite for the Coq proof assistant. The
dataset is made up of Git commits from dozens of open-source projects with old and new versions of

1
1 definitions and proofs aligned across commits. Building this dataset was a significant undertaking,
1 highlighting a number of challenges and gaps in existing infrastructure. We discuss these challenges
15 and gaps, and we provide re daus for Ly theprogigssigagt community can address them.
1 Our hope is to make it easifll to Hiild sets ay narlsuiiglso that machine-learning tools
x for proofs will move to targfl] thdftasiff that n i nitably across proof assistants.

2012 ACM Subject Classification Computing ies — Machine learning: Software and its

ural Automation (Part 3 of 5

Fourth Project: Baldur

e Using an LLM, one could, conceivably,
synthesize entire proofs at once.

e Collaborating with Google, we fine-tuned the
Minerva model to synthesize proofs in
Isabelle/HOL

e Evaluated on PISA dataset (theorems in
Isabelle/HOL)

Neural Automation (Part 3 of 5)

Fourth Project: Baldur

0.4 ///l
w
g
=2 0.35
S
L
=
3
3 0.3
-
a,
(P
S
o
= . w
& 0.2 —o— Generate

- Generate+Repair
0.2 —o— Generate+Repair (no err msg)
0 5 10 15 20 25 30

number of proof attempts

Neural Automation (Part 3 of 5)

Fourth Project: Baldur

e Baldur (without repair) can synthesize whole
proofs for 47.9% of the theorems, whereas
search-based approaches prove 39.0%.

e Baldur can repair its own erroneous proof
attempts using the error message from the
proof assistant, proving another 1.5%.

e Diversity continues to help. Together with
Thor, a tool that combines a model, search,
and a hammer, Baldur can prove 65.7%.

Neural Automation (Part 3 of 5)

Neural automation:

- unpredictable

- not dependable

- not understandable

+ not very limited in scope

+ takes little expertise to extend

Neural Automation (Part 3 of 5) _

S Checking the Proof

S Small Logical Kernel

Tactics ~

Domain-Specific Heuristics S~ ~

~
~
~

Proof Transformations RN

~
~

Producing the Proof Scary Programs RN

~
~

Neural Automation (Part 3 of 5) _

S Checking the Proof

S Small Logical Kernel

Tactics ~

Domain-Specific Heuristics S~ ~

~
~
~

Proof Transformations RN

~
~
~

Producing the Proof chatcer e

~
~

Neural Automation (Part 3 of 5) _

Already Neurosymbolic

< Checking the Proof

S Small Logical Kernel

Tactics ~

Domain-Specific Heuristics S~ ~

~
~
~

Proof Transformations RN
~

Producing the Proof neuralNetworks ~

~
~

Neural Automation (Part 3 of 5) _

But we want even more of
the benefits of both kinds of
automation.

Neural Automation (Part 3 of 5) _

4. Building Bridges
5. Opportunities

Observation 1: We can do
fairly well sometimes
without search. Maybe we
can use search at a higher
level than before and get
further returns?

Building Bridges (Part 4 of 5)

One idea: Move the search
process up in abstraction.

Building Bridges (Part 4 of 5)

One idea: Move the search
process up in abstraction.

Building Bridges (Part 4 of 5) .

Proof Search

list_forall2_app

Conversational Action Search

Getting More out of Large Language Models for Proofs

vy o r - . - 9 U — o
Shizhuo Dylan Zhang', Emily First?, and Talia Ringer®

University of Illinois Urbana-Champaign, USA
2 i s ~ ror
“ University of Massachusetts Amherst, USA

Abstract

Large language models have the potential to simplify formal theorem proving and make
it more accessible. But how to get the most out of these models is still an open question.
To answer this question, we take a step back and explore the failure cases of these models
using common prompting-based technicmes Ounr talk will discuss these failure cases and

what they can teach us about ho\AITP 202305(* models.

Building Bridges (Part 4 of 5

Conversational Action Search

Prove Theorem

Look Up
Definition

Write Proof]

[Revise Proof] [Invoke Critic]

Run Premise
Selection

]

\,

Write Proof

QED

Conversational Action Search

Prove Theorem

Look Up Run Premise
Definition Selection
Write Proof] Write Proof

G
a

[Revise Proof] QED
G

Conversational Action Search

Prove Theorem
Look Up Run Premise
Definition Selection
Write Proof] Write Proof

G
a

[Revise Proof] QED
G

Conversational Action Search

$SS Context Size

Prove Theorem

[Look Up

Run Premise
Definition

Selection

Write Proof] Write Proof

G
a

[Revise Proof] QED
G

Conversational Action Search

$SS Context Size

Prove Theorem

Run Premise]

Selection

Look Up
Definition

Hard to Engineer

p
Write Proof] Write Proof

G y

4 N
[Revise Proof] QED

G y

Conversational Action Search

Promising Results

Building Bridges (Part 4 of 5) ,

Observation 2: Diversity In
models helps, and diversity
In technigues appears to
help, too. Let's keep taking
advantage of that.

Building Bridges (Part 4 of 5) ,

Ongoing: Best of both
worlds for proof repair, too.

Building Bridges (Part 4 of 5)

Neural proof repair: good for
large, repetitive, mostly syntactic
changes at the tactic level, like
from updating Coq versions

Building Bridges (Part 4 of 5) .

Neural proof repair: good for
large, repetitive, mostly syntactic
changes at the tactic level, like
from updating Coq versions

Symbolic proof repair: good for
well-scoped semantic changes
at the term level, like those
described by equivalences

Building Bridges (Part 4 of 5) .

Neurosymbolic proof repair:
good for large, repetitive, mostly
syntactic changes at the tactic
level, like from updating Coq
versions? And also, good for
well-scoped semantic changes
at the term level, like those
described by equivalences?

Building Bridges (Part 4 of 5) .

Neurosymbolic proof repair:
good for large, repetitive, mostly
syntactic changes at the tactic
level, like from updating Coq
versions? And also, good for
well-scoped semantic changes
at the term level, like those
described by equivalences?
Better than the sum of its parts?

Building Bridges (Part 4 of 5) .,

1. Proof Assistants

2. Symbolic Automation
3. Neural Automation
4. Building Bridges

5. Opportunities

So far I've assumed the
specification already exists.

Opportunities (Part 5 of 5) .

Tree Proofs for Free?

Proof Engineer Proof Assistant

() Program
g Specification
N |Fa
)

Opportunities (Part 5 of 5)

Tree Proofs for Free?

Inductive isLeft {A} : @tree A -> @tree A -> Prop :=
| LeafLeaf : V x, isLeft (Leaf x) (Leaf x) 4
| NodeLeft: v x I, isLeft (Leaf x) | -> isLeft (Leaf x) (Node I r)
| NodeRight: Vv x I,

r <> Leaf x -> isLeft (Leaf x) r -> isLeft (Leaf x) (Node I r).

Definition forall_Left {A} (P : @tree A -> Prop) (t : @tree A) :=
Vv |, isLeftlt->PI.

Definition lift_to_tree_prop {A} (P : A -> bool) : @tree A -> Prop :=
fun | => exists x, | = Leaf x /\ P x = true.

Theorem forall_left_leaves_correct {A} : vV pred (t: @tree A),

(forall_Left (lift_to_tree_prop pred) t) <->
(@forall_left_leaves A pred t = true).

Opportunities (Part 5 of 5)

What can we do to help
people specify software, or
conjecture in mathematics?

Opportunities (Part 5 of 5)

What can we do to help

people specify software, or
conjecture in mathematics?
This is risky, but promising,.

Opportunities (Part 5 of 5)

Key Challenge:
There is no oracle for a
specification!

Opportunities (Part 5 of 5)

No Oracle for Specification

true ...

Opportunities (Part 5 of 5) .

No Oracle for Specification

Inductive isLeft {A} : @tree A -> @tree A -> Prop :=
| LeafLeaf : V x, isLeft (Leaf x) (Leaf x)
| NodeLeft: v x I, isLeft (Leaf x) | -> isLeft (Leaf x) (Node I r)
| NodeRight: V xIr,
r <> Leaf x -> isLeft (Leaf x) r -> isLeft (Leaf x) (Node I r).

Definition forall_Left {A} (P : @tree A -> Prop) (t : @tree A) :=
Vv |, isLeftlt->PI.

Definition lift_to_tree_prop {A} (P : A -> bool) : @tree A -> Prop :=
fun | => exists x, | = Leaf x /\ P x = true.

Theorem forall_left_leaves_correct {A} : vV pred (t: @tree A),

(forall_Left (lift_to_tree_prop pred) t) <->
(@forall_left_leaves A pred t = true).

Opportunities (Part 5 of 5)

No Oracle for Specification

Inductive isLeft {A} : @tree A -> @tree A -> Prop :=
| LeafLeaf : Vv x, isLeft (Leaf x) (Leaf x)
| NodeLeft: v xIr, isLeft (Leaf x) | -> isLeft (Leaf x) (Node I r).

Definition forall_Left {A} (P : @tree A -> Prop) (t : @tree A) :=
Vv |, isLeftlt->PI.

Definition lift_to_tree_prop {A} (P : A -> bool) : @tree A -> Prop :=
fun | => exists x, | = Leaf x /\ P x = true.

Theorem forall_left_leaves_correct {A} : vV pred (t: @tree A),

(forall_Left (lift_to_tree_prop pred) t) <->
(@forall_left_leaves A pred t = true).

Opportunities (Part 5 of 5)

No Oracle for Specification

Here are some example input/output pairs that satisfy
the specification | have generated for you:

ﬁ tree = Node (Leaf 2, Node (Leaf 4, Leaf 3)) \
let () = Printf.printf "%b\n’

(check_predicate_left_leaves is_even tree) (* true *)

let tree = Node (Leaf 2, Node (Leaf 3, Leaf 4))
let () = Printf.printf "%b\n"
(check_predicate_left_leaves is_even tree) (* true *)

let tree = Node (Leaf 3, Node (Leaf 2, Leaf 4))
let () = Printf.printf "%b\n’
\(Check_predicate_left_leaves is_even tree) (* false *)/

Opportunities (Part 5 of 5)

197

No Oracle for Specification

One of these examples looks wrong. The following
code should print false since 3 is not even:

e)
let tree = Node (Leaf 2, Node (Leaf 3, Leaf 4))
let () = Printf.printf "%b\n"
(check_predicate_left_leaves is_even tree) (* false *) y

Opportunities (Part 5 of 5)

No Oracle for Specification

| see, so you want to consider nodes that occur in right
branches too. How is this?

4 A
Inductive isLeft {A} : @tree A -> @tree A -> Prop :=

| LeafLeaf : V x, isLeft (Leaf x) (Leaf x)
| NodeLeft: v x I, isLeft (Leaf x) | -> isLeft (Leaf x) (Node | r)
| NodeRight : V x I, isLeft (Leaf x) r -> isLeft (Leaf x) (Node I r).

_ W,

Opportunities (Part 5 of 5)

No Oracle for Specification

Close! But | don't want that NodeRight case to hold
whenr is a leaf, otherwise it will just include all leaves,
not just the left ones. For example, this test case you
generated should still print true, but now it is false:

4 N
let tree = Node (Leaf 2, Node (Leaf 4, Leaf 3))

let () = Printf.printf "%b\n"
(check_predicate_left_leaves is_even tree) (* false *)

_ W

200

Opportunities (Part 5 of 5)

No Oracle for Specification

Understood. How is this?

(Inductive isLeft {A} : @tree A -> @tree A -> Prop := R
| LeafLeaf : V x, isLeft (Leaf x) (Leaf x)
| NodeLeft: Vv x|, isLeft (Leaf x) | -> isLeft (Leaf x) (Node I r)
| NodeRight: V xIr,
r <> Leaf x -> isLeft (Leaf x) r -> isLeft (Leaf x) (Node I r).

201

Opportunities (Part 5 of 5)

No Oracle for Specification

LGTM! Passes all tests.

(Inductive isLeft {A} : @tree A -> @tree A -> Prop := R
| LeafLeaf : V x, isLeft (Leaf x) (Leaf x)
| NodeLeft: Vv x|, isLeft (Leaf x) | -> isLeft (Leaf x) (Node I r)
| NodeRight: V x I,
r <> Leaf x -> isLeft (Leaf x) r -> isLeft (Leaf x) (Node I r).

202

Opportunities (Part 5 of 5)

No Oracle for Specification

OK, then the generated code is wrong. Here is updated

code that satisfies the specification:

et rec aux is_left = function
Leaf x -> if is_left then predicate x else true

In aux true tree

let tree = Node (Leaf 2, Node (Leaf 3, Leaf 4))
let () = Printf.printf "%b\n"
Qcheck_predicate_left_leaves is_even tree)

@[rec check_predicate_left_leaves predicate tree = \

Node (left, right) -> (aux true left) && (aux false right)

_/

Opportunities (Part 5 of 5)

203

No Oracle for Specification

I've proven it satisfies the specification in Coq for you.

ﬂ heorem forall_left_leaves_correct {A} : vV pred (t: @tree A), \

(forall_Left (lift_to_tree_prop pred) t) <->
(@forall_left_leaves A pred t = true).

Proof.
unfold forall_left_leaves, forall_Left, lift_to_tree_prop. split.

- intros. apply aux_correct. auto.

- induction t; intros.
+ edestruct H. inversion HO. subst. exists a. split; auto.

+ simpl in H. inversion HO; subst.
* apply IHt1; auto. destruct (aux pred true t1) eqn:b1; auto.
* apply IHt2; auto. destruct (aux pred false t2) eqgn:b2.
-- destruct t2; auto. inversion H5. subst. destruct H4. auto.

\ - destruct (aux pred true t1) egn:b1; discriminate.
Qed. /

Opportunities (Part 5 of 5) ..

Tree Proofs for Freel

Proof Engineer Proof Assistant

() Program
g Specification
N |Fa
)

Opportunities (Part 5 of 5)

Open Question:

What tools can best help
users make sense of
generated theorems?

What information presented
In what ways best helps
users ensure that they

match their intentions?
Opportunities (Part 5 of 5) _

