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Tree Functions with ChatGPT

even 
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                  The code you provided doesn't count left 
leaves that occur on right branches, but I want it to. 
Can you fix it so that it does? For example, this code 
should print false since 3 is not even:

  let tree = Node (Leaf 2, Node (Leaf 3, Leaf 4))
  let () = Printf.printf "%b\n" 
    (check_predicate_left_leaves is_even tree)
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Tree Functions with ChatGPT
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Tree Functions with ChatGPT

  let rec check_predicate_left_leaves predicate tree =   
    let rec aux is_left = function 
    | Leaf x -> if is_left then predicate x else true 
    | Node (left, right) -> (aux true left) && (aux false right)
    in aux true tree

  let tree = Node (Leaf 2, Node (Leaf 3, Leaf 4))
  let () = Printf.printf "%b\n" 
    (check_predicate_left_leaves is_even tree)
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Tree Functions with ChatGPT

  let rec check_predicate_left_leaves predicate tree =   
    let rec aux is_left = function 
    | Leaf x -> if is_left then predicate x else true 
    | Node (left, right) -> (aux true left) && (aux false right)
    in aux true tree

  let tree = Node (Leaf 2, Node (Leaf 3, Leaf 4))
  let () = Printf.printf "%b\n" 
    (check_predicate_left_leaves is_even tree)

Passes test!
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     Compilers

Operating Systems

   File Systems Web Browsers

     Machine Learning
              Systems Quantum Optimizers

Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric and Zachary Tatlock (2019), 
QED at Large: A Survey of Engineering of Formally Verified Software, Foundations 
and Trends in Programming Languages: Vol. 5, No. 2-3, pp 102–281.

Proof Assistants for Verification
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Proof Assistants for Math

https://github.com/leanprover-community/mathlib4/pulse/monthly 

https://github.com/leanprover-community/mathlib4/pulse/monthly


It’s still hard to write proofs.
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Proof automation makes it
easier to develop and 
maintain formal proofs 
using proof assistants. 
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Traditional automation:  
 + predictable
 + dependable
 + understandable
 - limited in scope
 - takes expertise to extend
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Symbolic automation:  
 + predictable
 + dependable
 + understandable
 - limited in scope
 - takes expertise to extend
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Symbolic automation:  
 + predictable
 + dependable
 + understandable
 - limited in scope
 - takes expertise to extend
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Neural automation:  
 - unpredictable
 - not dependable
 - not understandable
 + not very limited in scope
 + can take little expertise to extend
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Best of both worlds?  
 + predictable
 + dependable
 + understandable
 + not very limited in scope
 + can take little expertise to extend
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Though proof assistants 
have come a long way, 
they are still hard for most 
people to use. We can 
make this easier.
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Though proof assistants 
have come a long way, 
they are still hard for most 
people to use. We must 
make this easier, now.
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We Must Make Proofs Easier, Now

  let rec check_predicate_left_leaves predicate tree =   
    let rec aux is_left = function 
    | Leaf x -> if is_left then predicate x else true 
    | Node (left, right) -> (aux true left) && (aux false right)
    in aux true tree

  let tree = Node (Leaf 2, Node (Leaf 3, Leaf 4))
  let () = Printf.printf "%b\n" 
    (check_predicate_left_leaves is_even tree)

Passes test!
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Inductive list T :=
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Inductive list T :=
| nil : list T (* [ ] *)
| cons : T → list T → list T

List Zip Preserves Length 
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Inductive list T :=
| nil : list T (* [ ] *)
| cons : T → list T → list T  (* t :: l *)

List Zip Preserves Length 

 Proof Assistants (Part 1 of 5)
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Inductive list T :=
| nil : list T (* [ ] *)
| cons : T → list T → list T (* t :: l *)
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Inductive list T :=
| nil : list T (* [ ] *)
| cons : T → list T → list T (* t :: l *)

length : list T → nat

List Zip Preserves Length

 Proof Assistants (Part 1 of 5)



List Zip Preserves Length
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Fixpoint zip {A B} (l1 : list A) (l2 : list B) : list (A * B) :=
  match l1, l2 with
  | [ ], _ -> [ ]
  | _, [ ] -> [ ]
  | h1 :: tl1, h2 :: tl2 -> (h1, h2) :: (zip tl1 tl2)
  end.

List Zip Preserves Length
Modified from hs-to-coq

 Proof Assistants (Part 1 of 5)
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Fixpoint zip {A B} (l1 : list A) (l2 : list B) : list (A * B) :=
  match l1, l2 with
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Fixpoint zip {A B} (l1 : list A) (l2 : list B) : list (A * B) :=
  match l1, l2 with
  | [ ], _ -> [ ]
  | _, [ ] -> [ ]
  | h1 :: tl1, h2 :: tl2 -> (h1, h2) :: (zip tl1 tl2)
  end.

List Zip Preserves Length
Modified from hs-to-coq
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List Zip Preserves Length

58

      zip

            Us            Coq

✓

✓

✓

✓

        Proof

  zip preserves 
       length

 Proof Assistants (Part 1 of 5)



Theorem zip_preserves_length : 
  ∀ {A B} (l1 : list A) (l2 : list B),  
    length l1 = length l2 → 
    length (zip l1 l2) = length l1.
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List Zip Preserves Length

 Proof Assistants (Part 1 of 5)
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Theorem zip_preserves_length : 
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Theorem zip_preserves_length : 
  ∀ {A B} (l1 : list A) (l2 : list B),  
    length (zip l1 l2) = min (length l1) (length l2).
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Proof Automation
(The kind you’re used to.)

69   Symbolic Automation (Part 2 of 5)



Example: Tactics

70   Symbolic Automation (Part 2 of 5)
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Tactics
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Custom proof modes
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Plugins
Proof repair
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Kinds of Automation
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This automation can do
basically anything, yet still 
preserve correctness.

91   Symbolic Automation (Part 2 of 5)



De Bruijn Criterion

92   Symbolic Automation (Part 2 of 5)
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Producing the Proof
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   Symbolic Automation (Part 2 of 5)
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Producing the Proof

Checking the Proof

Domain-Specific Heuristics

Proof Transformations

Small & Human-Readable Logic/Type Checker 

         Tactics

   Symbolic Automation (Part 2 of 5)

Scary Programs
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Producing the Proof

Checking the Proof

Domain-Specific Heuristics

Proof Transformations

                    Small Logical Kernel

         Tactics

   Symbolic Automation (Part 2 of 5)

Scary Programs



With de Bruijn, as long as
you don’t touch the kernel,
your automation is safe.

102   Symbolic Automation (Part 2 of 5)



With de Bruijn, as long as
you don’t touch the kernel,
your automation is safe.*
(If your specification is OK, 
your kernel has no bugs, and 
you don’t introduce axioms)

103   Symbolic Automation (Part 2 of 5)

* If your specification is OK, your kernel has no bugs, 
  and you don’t assume contradictory or false axioms.



Symbolic automation:  
 + predictable
 + dependable
 + understandable
 - limited in scope
 - takes expertise to extend

104   Symbolic Automation (Part 2 of 5)



Symbolic proof repair:  
 + predictable
 + dependable
 + understandable
 - limited in scope
 - takes expertise to extend

105   Symbolic Automation (Part 2 of 5)



106Traditional Automation (Part 2 of 5)

Example: Proof Repair
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   Symbolic Automation (Part 2 of 5)



107Traditional Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)

PLDI 2021

PhD Thesis

   Symbolic Automation (Part 2 of 5)



You have changed a
datatype, and now the 
standard library is broken!

108

108   Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)



Inductive list T :=
| nil : list T
| cons : T → list T → list T

(* Repair all 451 functions & proofs: *)
Repair Module Old.list New.list in StdLib.

109

109   Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)



Inductive list T :=
| cons : T → list T → list T
| nil : list T

(* Repair all 451 functions & proofs: *)
Repair Module Old.list New.list in StdLib.
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Example: Proof Repair (PUMPKIN Pi)

   Symbolic Automation (Part 2 of 5)



Inductive list T :=
| cons : T → list T → list T
| nil : list T

(* Repair all 451 functions & proofs: *)
Repair Module Old.list New.list in StdLib.

111

111   Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)

451 functions & proofs, 
25 seconds



Traditional proof repair:  
 + predictable
 + dependable
 + understandable
 - limited in scope
 - takes expertise to extend

112   Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)



PUMPKIN Pi supports
any change described
by a type equivalence.

113

113

The Univalent Foundations Program. 2013. Homotopy 
Type Theory: Univalent Foundations of Mathematics. 
Institute for Advanced Study.

   Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Predictable (Equivalences), Dependable



PUMPKIN Pi supports
any change described
by a type equivalence.
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The Univalent Foundations Program. 2013. Homotopy 
Type Theory: Univalent Foundations of Mathematics. 
Institute for Advanced Study.

   Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Predictable (Equivalences), Dependable
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115   Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Predictable (Equivalences), Dependable
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   swap l

swap_back (swap l)

l :Old.list T
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116   Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Predictable (Equivalences), Dependable
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    swap l

Old.list T
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117   Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Predictable (Equivalences), Dependable
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118   Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Predictable (Equivalences), Dependable
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PUMPKIN Pi is 
flexible & useful 
for real scenarios.

122

122   Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Predictable (Equivalences), Dependable
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1 Unary to binary (classic benchmark)

2 Modifying PL (user study)

3 Extending PL (user study)

4 Adding indices (ornaments)

5 Factoring constructors (reviewer)

6 Permute hypotheses (type theorist)

7 Vector to finite set (type theorist)

8 Industrial use (mixed methods)

123   Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Predictable (Equivalences), Dependable



Symbolic proof repair:  
 + predictable
 + dependable
 + understandable
 - limited in scope
 - takes expertise to extend

124   Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)



Symbolic proof repair:  
 + predictable
 + dependable
 + understandable* (for type nerds)
 - limited in scope
 - takes expertise to extend

125   Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
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   Symbolic Automation (Part 2 of 5)
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   Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Understandable* (Transport as a Transformation)



Transport: Rewriting
across Equivalences
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The Univalent Foundations Program. 2013. Homotopy 
Type Theory: Univalent Foundations of Mathematics. 
Institute for Advanced Study.

   Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Understandable* (Transport as a Transformation)



Transport as a
Proof Term Transformation

129   Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Understandable* (Transport as a Transformation)



For type nerds:
Deconstruct Equivalence
(Lambek’s Theorem)
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   Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Understandable* (Transport as a Transformation)
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   Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Understandable* (Transport as a Transformation)
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   Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Understandable* (Transport as a Transformation)



Symbolic proof repair:  
 + predictable
 + dependable
 + understandable* (for type nerds)
 - limited in scope
 - takes expertise to extend

133   Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)



               two list queue
       ?

         ?

 one list queue
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Example: Proof Repair (PUMPKIN Pi)
Limited Scope (Quotient Equivalences), Hard to Extend

Carlo Angiuli, Evan Cavallo, Anders Mörtberg, 
and Max Zeuner. Internalizing Representation 
Independence with Univalence. POPL 2021.



               two list queue
       ?

         ?

 one list queue
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Example: Proof Repair (PUMPKIN Pi)
Limited Scope (Setoid Equivalences), Hard to Extend



One PhD student,
one undergrad,
one advisor,
2.5 years.
Is this sustainable?

136

   Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Limited Scope (Setoid Equivalences), Hard to Extend

2.5 years later…



"While the reviewers agree that this 
article tackles an interesting problem, 
its contributions with respect to 
pre-existing and related work appear 
too incremental and limited in scope."
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   Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Limited Scope (Setoid Equivalences), Hard to Extend

2.5 years later…



1. Proof Assistants
2. Symbolic Automation
3. Neural Automation
4. Building Bridges
5. Opportunities
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Neural automation:  
 - unpredictable
 - not dependable
 - not understandable
 + not very limited in scope
 + takes little expertise to extend

139      Neural Automation (Part 3 of 5)



Important note: 
Neural proof automation is not brand 
new! It is just growing in popularity.
 

140

      Neural Automation (Part 3 of 5)



ESEC/FSE 2023
Distinguished Paper

ITP 2023

ICSE Demo 2023

Growing Interest

TOPLAS Vol. 45, Issue 2:   
No. 12, pp 1-30, 2023

      Neural Automation (Part 3 of 5)



ESEC/FSE 2023
Distinguished Paper

ITP 2023

ICSE Demo 2023

First Project: Passport

TOPLAS Vol. 45, Issue 2:   
No. 12, pp 1-30, 2023
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Addition of real 
numbers is 
commutative

forall r1 r2: R, 
Rplus r1 r2 = Rplus r2 r1

Next Tactic

First Project: Passport
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Category Vocabulary 
Indexing

Subword Sequence 
Modeling

Path Elaboration

forall r1 r2: R, 
Rplus r1 r2 = Rplus r2 r1

First Project: Passport
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Next TacticProof State

Core Model

100101110100
011001001101

Encoded 
Proof State

First Project: Passport
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Neural automation:  
 - unpredictable
 - not dependable
 - not understandable
 + not very limited in scope
 + takes little expertise to extend

146

First Project: Passport
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● Yang and Deng 2019
● Mathematical formalizations, proven correct 

programs, and Coq automation libraries
● 123 open-source Coq projects
● Trained on 97 projects (57,719 theorems) 
● Tested on 26 projects (10,782 theorems)

147

CoqGym

First Project: Passport – Big Scope
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We can prove 45% more theorems than before!

First Project: Passport – Big Scope
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Diversity brings even higher returns! 
64% more theorems than the baseline!

First Project: Passport – Big Scope

      Neural Automation (Part 3 of 5)
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First Project: Passport – Easy to Extend
● Some easy Python scripts on top of 

someone else’s existing project
● Parallelized work for different extensions 

between me and five other authors
● Undergraduate implemented most 

challenging extension in an order of weeks
● Scripts were simple and fun enough that I 

got excited when writing one in between 
drafting thesis chapters, ran into a couch, 
and broke my big toe

      Neural Automation (Part 3 of 5)



Language models:  
 - unpredictable
 - not dependable
 - not understandable
 + not very limited in scope
 + takes little expertise to extend

151

First Project: Passport

      Neural Automation (Part 3 of 5)
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First Project: Passport – Confusion
● Somehow, the name of the user running the 

training script impacted the file order, which 
impacted the results of training a model on 
identical data in an identical way

● We found a nondeterminism bug in Pytorch 
● Some combinations of extensions worked 

mysteriously poorly, even though all 
together they helped

● Apparently this is just life with even small 
LMs? Is this life now? Help?

      Neural Automation (Part 3 of 5)



ESEC/FSE 2023
Distinguished Paper

ITP 2023

ICSE Demo 2023

More in the Paper!

TOPLAS Vol. 45, Issue 2:   
No. 12, pp 1-30, 2023

      Neural Automation (Part 3 of 5)



ESEC/FSE 2023
Distinguished Paper

ITP 2023

ICSE Demo 2023

Since Then

TOPLAS Vol. 45, Issue 2:   
No. 12, pp 1-30, 2023

      Neural Automation (Part 3 of 5)



ESEC/FSE 2023
Distinguished Paper

ITP 2023

ICSE Demo 2023

Second Project: Proofster

TOPLAS Vol. 45, Issue 2:   
No. 12, pp 1-30, 2023

      Neural Automation (Part 3 of 5)



https://proofster.cs.umass.edu/ (web) 
https://github.com/agrarpan/coq-synthesis (plugin) 

Second Project: Proofster

      Neural Automation (Part 3 of 5)

https://proofster.cs.umass.edu/
https://github.com/agrarpan/coq-synthesis


Second Project: Proofster 

      Neural Automation (Part 3 of 5)
Uses https://github.com/cpitclaudel/alectryon  

https://github.com/cpitclaudel/alectryon


ESEC/FSE 2023
Distinguished Paper

ICSE Demo 2023

Third Project: PRISM

TOPLAS Vol. 45, Issue 2:   
No. 12, pp 1-30, 2023

ITP 2023
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● Dataset for proof repair models for Coq
● Actual proof repairs by proof engineers
● Collaboration with Radiance
● Massive infrastructure undertaking

○ Building many different projects
○ … with many different Coq versions
○ … for many different commits
○ … and aligning data across commit pairs

● First repair model trained
● Evaluation WIP

Third Project: PRISM
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ICSE Demo 2023

Fourth Project: Baldur

TOPLAS Vol. 45, Issue 2:   
No. 12, pp 1-30, 2023

ITP 2023

ESEC/FSE 2023
Distinguished Paper

      Neural Automation (Part 3 of 5)



● Using an LLM, one could, conceivably, 
synthesize entire proofs at once.

● Collaborating with Google, we fine-tuned the 
Minerva model to synthesize proofs in 
Isabelle/HOL

● Evaluated on PISA dataset (theorems in 
Isabelle/HOL)

Fourth Project: Baldur
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Fourth Project: Baldur

      Neural Automation (Part 3 of 5)



● Baldur (without repair) can synthesize whole 
proofs for 47.9% of the theorems, whereas 
search-based approaches prove 39.0%.

● Baldur can repair its own erroneous proof 
attempts using the error message from the 
proof assistant, proving another 1.5%. 

● Diversity continues to help. Together with 
Thor, a tool that combines a model, search, 
and a hammer, Baldur can prove 65.7%.

Fourth Project: Baldur
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Neural automation:  
 - unpredictable
 - not dependable
 - not understandable
 + not very limited in scope
 + takes little expertise to extend

164      Neural Automation (Part 3 of 5)
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Producing the Proof

Checking the Proof

Domain-Specific Heuristics

Proof Transformations

                    Small Logical Kernel

         Tactics

Scary Programs

      Neural Automation (Part 3 of 5)
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Producing the Proof

Checking the Proof

Domain-Specific Heuristics

Proof Transformations

                    Small Logical Kernel

         Tactics

ChatGPT

      Neural Automation (Part 3 of 5)
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Producing the Proof

Checking the Proof

         Tactics

Domain-Specific Heuristics

Proof Transformations

Neural Networks

                    Small Logical Kernel

Already Neurosymbolic

      Neural Automation (Part 3 of 5)



But we want even more of 
the benefits of both kinds of 
automation.

168      Neural Automation (Part 3 of 5)



1. Proof Assistants
2. Symbolic Automation
3. Neural Automation
4. Building Bridges
5. Opportunities
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Observation 1: We can do 
fairly well sometimes 
without search. Maybe we 
can use search at a higher 
level than before and get 
further returns?

170           Building Bridges (Part 4 of 5)



One idea: Move the search 
process up in abstraction.
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One idea: Move the search 
process up in abstraction.

172           Building Bridges (Part 4 of 5)



173    Best of Both Worlds (Part 4 of 5)

Proof Search

           Building Bridges (Part 4 of 5)



174    Best of Both Worlds (Part 4 of 5)

Conversational Action Search

AITP 2023
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175    Best of Both Worlds (Part 4 of 5)

Conversational Action Search

Prove Theorem

Look Up 
Definition

Write Proof

Revise Proof

Run Premise 
Selection

Write Proof

QEDInvoke Critic

           Building Bridges (Part 4 of 5)



176    Best of Both Worlds (Part 4 of 5)

Conversational Action Search

Prove Theorem

Look Up 
Definition

Write Proof

Revise Proof

Run Premise 
Selection

Write Proof

QEDInvoke Critic

           Building Bridges (Part 4 of 5)



177    Best of Both Worlds (Part 4 of 5)

Conversational Action Search

Prove Theorem

Look Up 
Definition

Write Proof

Revise Proof

Run Premise 
Selection

Write Proof

QEDInvoke Critic

$$$

           Building Bridges (Part 4 of 5)



178    Best of Both Worlds (Part 4 of 5)

Conversational Action Search

Prove Theorem

Look Up 
Definition

Write Proof

Revise Proof

Run Premise 
Selection

Write Proof

QEDInvoke Critic

$$$ Context Size

           Building Bridges (Part 4 of 5)



179    Best of Both Worlds (Part 4 of 5)

Conversational Action Search

Prove Theorem

Look Up 
Definition

Write Proof

Revise Proof

Run Premise 
Selection

Write Proof

QEDInvoke Critic

$$$ Context Size

           Building Bridges (Part 4 of 5)

Hard to Engineer



Promising Results

180

Conversational Action Search

           Building Bridges (Part 4 of 5)



Observation 2: Diversity in 
models helps, and diversity 
in techniques appears to 
help, too. Let’s keep taking 
advantage of that.

181           Building Bridges (Part 4 of 5)



Ongoing: Best of both 
worlds for proof repair, too.

182           Building Bridges (Part 4 of 5)



183           Building Bridges (Part 4 of 5)

Neural proof repair: good for 
large, repetitive, mostly syntactic 
changes at the tactic level, like 
from updating Coq versions

Symbolic proof repair: good for 
well-scoped semantic changes 
at the term level, like those 
described by equivalences



184           Building Bridges (Part 4 of 5)

Neural proof repair: good for 
large, repetitive, mostly syntactic 
changes at the tactic level, like 
from updating Coq versions

Symbolic proof repair: good for 
well-scoped semantic changes 
at the term level, like those 
described by equivalences



185           Building Bridges (Part 4 of 5)

Neurosymbolic proof repair: 
good for large, repetitive, mostly 
syntactic changes at the tactic 
level, like from updating Coq 
versions? And also, good for 
well-scoped semantic changes 
at the term level, like those 
described by equivalences? 
Better than the sum of its parts?



186           Building Bridges (Part 4 of 5)

Neurosymbolic proof repair: 
good for large, repetitive, mostly 
syntactic changes at the tactic 
level, like from updating Coq 
versions? And also, good for 
well-scoped semantic changes 
at the term level, like those 
described by equivalences? 
Better than the sum of its parts?



1. Proof Assistants
2. Symbolic Automation
3. Neural Automation
4. Building Bridges
5. Opportunities
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So far I’ve assumed the 
specification already exists.

188                Opportunities (Part 5 of 5)



189

 Program

Proof Engineer Proof Assistant

✓

✓

✓

✓

Specification

        Proof

Tree Proofs for Free?
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Tree Proofs for Free?

Inductive isLeft {A} : @tree A -> @tree A -> Prop :=
| LeafLeaf : ∀ x, isLeft (Leaf x) (Leaf x)
| NodeLeft : ∀ x l r, isLeft (Leaf x) l -> isLeft (Leaf x) (Node l r)
| NodeRight : ∀ x l r, 
     r <> Leaf x -> isLeft (Leaf x) r -> isLeft (Leaf x) (Node l r).

Definition forall_Left {A} (P : @tree A -> Prop) (t : @tree A) :=
   ∀ l, isLeft l t -> P l.

Definition lift_to_tree_prop {A} (P : A -> bool) : @tree A -> Prop :=
  fun l => exists x, l = Leaf x /\ P x = true.
  
Theorem forall_left_leaves_correct {A} : ∀ pred (t : @tree A),
    (forall_Left (lift_to_tree_prop pred) t) <-> 
    (@forall_left_leaves A pred t = true).

                Opportunities (Part 5 of 5)



What can we do to help 
people specify software, or 
conjecture in mathematics? 
This is risky, but promising. 
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What can we do to help 
people specify software, or 
conjecture in mathematics? 
This is risky, but promising.  

192                Opportunities (Part 5 of 5)



Key Challenge: 
There is no oracle for a 
specification!

193                Opportunities (Part 5 of 5)
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No Oracle for Specification

even 
2

3 4 true …

                Opportunities (Part 5 of 5)
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Inductive isLeft {A} : @tree A -> @tree A -> Prop :=
| LeafLeaf : ∀ x, isLeft (Leaf x) (Leaf x)
| NodeLeft : ∀ x l r, isLeft (Leaf x) l -> isLeft (Leaf x) (Node l r)
| NodeRight : ∀ x l r, 
     r <> Leaf x -> isLeft (Leaf x) r -> isLeft (Leaf x) (Node l r).

Definition forall_Left {A} (P : @tree A -> Prop) (t : @tree A) :=
   ∀ l, isLeft l t -> P l.

Definition lift_to_tree_prop {A} (P : A -> bool) : @tree A -> Prop :=
  fun l => exists x, l = Leaf x /\ P x = true.
  
Theorem forall_left_leaves_correct {A} : ∀ pred (t : @tree A),
    (forall_Left (lift_to_tree_prop pred) t) <-> 
    (@forall_left_leaves A pred t = true).

No Oracle for Specification

                Opportunities (Part 5 of 5)



196

Inductive isLeft {A} : @tree A -> @tree A -> Prop :=
| LeafLeaf : ∀ x, isLeft (Leaf x) (Leaf x)
| NodeLeft : ∀ x l r, isLeft (Leaf x) l -> isLeft (Leaf x) (Node l r).
| NodeRight : ∀ x l r, 
     r <> Leaf x -> isLeft (Leaf x) r -> isLeft (Leaf x) (Node l r).

Definition forall_Left {A} (P : @tree A -> Prop) (t : @tree A) :=
   ∀ l, isLeft l t -> P l.

Definition lift_to_tree_prop {A} (P : A -> bool) : @tree A -> Prop :=
  fun l => exists x, l = Leaf x /\ P x = true.
  
Theorem forall_left_leaves_correct {A} : ∀ pred (t : @tree A),
    (forall_Left (lift_to_tree_prop pred) t) <-> 
    (@forall_left_leaves A pred t = true).

No Oracle for Specification

                Opportunities (Part 5 of 5)



let tree = Node (Leaf 2, Node (Leaf 4, Leaf 3))
let () = Printf.printf "%b\n" 
  (check_predicate_left_leaves is_even tree) (* true *)

let tree = Node (Leaf 2, Node (Leaf 3, Leaf 4))
let () = Printf.printf "%b\n" 
  (check_predicate_left_leaves is_even tree) (* true *)

let tree = Node (Leaf 3, Node (Leaf 2, Leaf 4))
let () = Printf.printf "%b\n" 
  (check_predicate_left_leaves is_even tree) (* false *)

197

No Oracle for Specification

                Opportunities (Part 5 of 5)

Here are some example input/output pairs that satisfy 
the specification I have generated for you:



One of these examples looks wrong. The following 
code should print false since 3 is not even:

  let tree = Node (Leaf 2, Node (Leaf 3, Leaf 4))
  let () = Printf.printf "%b\n" 
    (check_predicate_left_leaves is_even tree) (* false *)

198                Opportunities (Part 5 of 5)

No Oracle for Specification
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Inductive isLeft {A} : @tree A -> @tree A -> Prop :=
| LeafLeaf : ∀ x, isLeft (Leaf x) (Leaf x)
| NodeLeft : ∀ x l r, isLeft (Leaf x) l -> isLeft (Leaf x) (Node l r)
| NodeRight : ∀ x l r, isLeft (Leaf x) r -> isLeft (Leaf x) (Node l r).

No Oracle for Specification

                Opportunities (Part 5 of 5)

I see, so you want to consider nodes that occur in right 
branches too. How is this?
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No Oracle for Specification

                Opportunities (Part 5 of 5)

Close! But I don’t want that NodeRight case to hold 
when r is a leaf, otherwise it will just include all leaves,
not just the left ones. For example, this test case you 
generated should still print true, but now it is false:

let tree = Node (Leaf 2, Node (Leaf 4, Leaf 3))
let () = Printf.printf "%b\n" 
  (check_predicate_left_leaves is_even tree) (* false *)
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Inductive isLeft {A} : @tree A -> @tree A -> Prop :=
| LeafLeaf : ∀ x, isLeft (Leaf x) (Leaf x)
| NodeLeft : ∀ x l r, isLeft (Leaf x) l -> isLeft (Leaf x) (Node l r)
| NodeRight : ∀ x l r, 
    r <> Leaf x -> isLeft (Leaf x) r -> isLeft (Leaf x) (Node l r).

No Oracle for Specification

                Opportunities (Part 5 of 5)

Understood. How is this?



202

Inductive isLeft {A} : @tree A -> @tree A -> Prop :=
| LeafLeaf : ∀ x, isLeft (Leaf x) (Leaf x)
| NodeLeft : ∀ x l r, isLeft (Leaf x) l -> isLeft (Leaf x) (Node l r)
| NodeRight : ∀ x l r, 
    r <> Leaf x -> isLeft (Leaf x) r -> isLeft (Leaf x) (Node l r).

No Oracle for Specification

                Opportunities (Part 5 of 5)

LGTM! Passes all tests.
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  let rec check_predicate_left_leaves predicate tree =   
    let rec aux is_left = function 
    | Leaf x -> if is_left then predicate x else true 
    | Node (left, right) -> (aux true left) && (aux false right)
    in aux true tree

  let tree = Node (Leaf 2, Node (Leaf 3, Leaf 4))
  let () = Printf.printf "%b\n" 
    (check_predicate_left_leaves is_even tree)

No Oracle for Specification

                Opportunities (Part 5 of 5)

OK, then the generated code is wrong. Here is updated 
code that satisfies the specification:
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No Oracle for Specification

                Opportunities (Part 5 of 5)

I’ve proven it satisfies the specification in Coq for you.

Theorem forall_left_leaves_correct {A} : ∀ pred (t : @tree A),
    (forall_Left (lift_to_tree_prop pred) t) <-> 
    (@forall_left_leaves A pred t = true).
Proof.
  unfold forall_left_leaves, forall_Left, lift_to_tree_prop. split.
  - intros. apply aux_correct. auto.
  - induction t; intros.
    + edestruct H. inversion H0. subst. exists a. split; auto.
    + simpl in H. inversion H0; subst.
      * apply IHt1; auto. destruct (aux pred true t1) eqn:b1; auto. 
      * apply IHt2; auto. destruct (aux pred false t2) eqn:b2.
        -- destruct t2; auto. inversion H5. subst. destruct H4. auto.
        -- destruct (aux pred true t1) eqn:b1; discriminate.
Qed.
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 Program

Proof Engineer Proof Assistant

✓

✓

✓

✓

Specification

        Proof

Tree Proofs for Free!

                Opportunities (Part 5 of 5)



Open Question: 
What tools can best help 
users make sense of 
generated theorems? 
What information presented 
in what ways best helps 
users ensure that they 
match their intentions?
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