
Bridging Neural & Symbolic
Proof Automation
Talia Ringer
University of Illinois Urbana-Champaign

2

Tree Functions with ChatGPT

x

y z

3

Tree Functions with ChatGPT

P x

P y z

4

Tree Functions with ChatGPT

P x

P y z

5

Tree Functions with ChatGPT

even
2

even
4

3 true

6

Tree Functions with ChatGPT

even
2

even
3

4false

7

Tree Functions with ChatGPT

even
2

even
4

3 true

8

Tree Functions with ChatGPT

even
2

4 3 true

9

Tree Functions with ChatGPT

even
2

3 4 true …

 The code you provided doesn't count left
leaves that occur on right branches, but I want it to.
Can you fix it so that it does? For example, this code
should print false since 3 is not even:

 let tree = Node (Leaf 2, Node (Leaf 3, Leaf 4))
 let () = Printf.printf "%b\n"
 (check_predicate_left_leaves is_even tree)

10

Tree Functions with ChatGPT

11

Tree Functions with ChatGPT

 let rec check_predicate_left_leaves predicate tree =
 let rec aux is_left = function
 | Leaf x -> if is_left then predicate x else true
 | Node (left, right) -> (aux true left) && (aux false right)
 in aux true tree

 let tree = Node (Leaf 2, Node (Leaf 3, Leaf 4))
 let () = Printf.printf "%b\n"
 (check_predicate_left_leaves is_even tree)

12

Tree Functions with ChatGPT

 let rec check_predicate_left_leaves predicate tree =
 let rec aux is_left = function
 | Leaf x -> if is_left then predicate x else true
 | Node (left, right) -> (aux true left) && (aux false right)
 in aux true tree

 let tree = Node (Leaf 2, Node (Leaf 3, Leaf 4))
 let () = Printf.printf "%b\n"
 (check_predicate_left_leaves is_even tree)

Passes test!

13

Tree Functions with ChatGPT

 let rec check_predicate_left_leaves predicate tree =
 let rec aux is_left = function
 | Leaf x -> if is_left then predicate x else true
 | Node (left, right) -> (aux true left) && (aux false right)
 in aux true tree

 let tree = Node (Leaf 2, Node (Leaf 3, Leaf 4))
 let () = Printf.printf "%b\n"
 (check_predicate_left_leaves is_even tree)

Passes test!

Proof Assistants

14

15

 Program

Proof Engineer Proof Assistant

Proof Assistants for Verification

Specification
✓

✓

✓
 Proof

✓

16

 Program

Proof Engineer Proof Assistant

✓

✓

✓
 Proof

✓

Specification

Proof Assistants for Verification

17

 Program

Proof Engineer Proof Assistant

✓

✓

✓

✓

Specification

 Proof

Proof Assistants for Verification

18

 Program

Proof Engineer Proof Assistant

✓

✓

✓

✓

Specification

 Proof

Proof Assistants for Verification

19

 Program

Proof Engineer Proof Assistant

✓

✓

✓

✓

Specification

 Proof

Proof Assistants for Verification

16 Hours Later …

20

 Compilers

Operating Systems

 File Systems Web Browsers

 Machine Learning
 Systems Quantum Optimizers

Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric and Zachary Tatlock (2019),
QED at Large: A Survey of Engineering of Formally Verified Software, Foundations
and Trends in Programming Languages: Vol. 5, No. 2-3, pp 102–281.

Proof Assistants for Verification

21

Proof Assistants for Math

https://github.com/leanprover-community/mathlib4/pulse/monthly

https://github.com/leanprover-community/mathlib4/pulse/monthly

It’s still hard to write proofs.

22

Proof automation makes it
easier to develop and
maintain formal proofs
using proof assistants.

23

Traditional automation:
 + predictable
 + dependable
 + understandable
 - limited in scope
 - takes expertise to extend

24

Symbolic automation:
 + predictable
 + dependable
 + understandable
 - limited in scope
 - takes expertise to extend

25

Symbolic automation:
 + predictable
 + dependable
 + understandable
 - limited in scope
 - takes expertise to extend

26

Neural automation:
 - unpredictable
 - not dependable
 - not understandable
 + not very limited in scope
 + can take little expertise to extend

27

Best of both worlds?
 + predictable
 + dependable
 + understandable
 + not very limited in scope
 + can take little expertise to extend

28

Though proof assistants
have come a long way,
they are still hard for most
people to use. We can
make this easier.

29

Though proof assistants
have come a long way,
they are still hard for most
people to use. We must
make this easier, now.

30

31

We Must Make Proofs Easier, Now

even
2

3 4 true …

32

We Must Make Proofs Easier, Now

 let rec check_predicate_left_leaves predicate tree =
 let rec aux is_left = function
 | Leaf x -> if is_left then predicate x else true
 | Node (left, right) -> (aux true left) && (aux false right)
 in aux true tree

 let tree = Node (Leaf 2, Node (Leaf 3, Leaf 4))
 let () = Printf.printf "%b\n"
 (check_predicate_left_leaves is_even tree)

Passes test!

33

 Program

Proof Engineer Proof Assistant

✓

✓

✓

✓

Specification

 Proof

We Must Make Proofs Easier, Now

16 Hours Later …

34

 Program

Proof Engineer Proof Assistant

✓

✓

✓

✓

Specification

 Proof

We Must Make Proofs Easier, Now

1. Proof Assistants
2. Symbolic Automation
3. Neural Automation
4. Building Bridges
5. Opportunities

35

1. Proof Assistants
2. Symbolic Automation
3. Neural Automation
4. Building Bridges
5. Opportunities

36

37

 Program

 Proof Engineer Proof Assistant

✓

✓

✓

 Specification

✓

 Proof Assistants (Part 1 of 5)

 Proof

38

 zip

 Us Proof Assistant

✓

✓

✓

List Zip Preserves Length

✓

 Proof

 zip preserves
 length

 Proof Assistants (Part 1 of 5)

39

 zip

 Us Proof Assistant

✓

✓

✓

List Zip Preserves Length

✓

 Proof

 zip preserves
 length

 Proof Assistants (Part 1 of 5)

40

 zip

 Us Coq (CIC)

✓

✓

✓

✓

 Proof

 zip preserves
 length

List Zip Preserves Length

 Proof Assistants (Part 1 of 5)

41

 zip

 Us Lean (CIC + UIP)

✓

✓

✓

✓

 Proof

 zip preserves
 length

List Zip Preserves Length

 Proof Assistants (Part 1 of 5)

42

 zip

 Us Cubical Agda (Cubical)

✓

✓

✓

✓

 Proof

 zip preserves
 length

List Zip Preserves Length

 Proof Assistants (Part 1 of 5)

43

 zip

 Us Isabelle/HOL (HOL)

✓

✓

✓

✓

 Proof

 zip preserves
 length

List Zip Preserves Length

 Proof Assistants (Part 1 of 5)

44

 zip

 Us Coq

✓

✓

✓

✓

 Proof

 zip preserves
 length

List Zip Preserves Length

 Proof Assistants (Part 1 of 5)

45

Inductive list T :=
| nil : list T
| cons : T → list T → list T

List Zip Preserves Length

 Proof Assistants (Part 1 of 5)

46

Inductive list T :=
| nil : list T
| cons : T → list T → list T

List Zip Preserves Length

 Proof Assistants (Part 1 of 5)

47

Inductive list T :=
| nil : list T (* [] *)
| cons : T → list T → list T

List Zip Preserves Length

 Proof Assistants (Part 1 of 5)

48

Inductive list T :=
| nil : list T (* [] *)
| cons : T → list T → list T (* t :: l *)

List Zip Preserves Length

 Proof Assistants (Part 1 of 5)

 1

 2 3

49

Inductive list T :=
| nil : list T (* [] *)
| cons : T → list T → list T (* t :: l *)

List Zip Preserves Length

 Proof Assistants (Part 1 of 5)

 2 3 1

50

Inductive list T :=
| nil : list T (* [] *)
| cons : T → list T → list T (* t :: l *)

length : list T → nat

List Zip Preserves Length

 Proof Assistants (Part 1 of 5)

List Zip Preserves Length

51

 zip

 Us Coq

✓

✓

✓

✓

 Proof

 zip preserves
 length

 Proof Assistants (Part 1 of 5)

52

Fixpoint zip {A B} (l1 : list A) (l2 : list B) : list (A * B) :=
 match l1, l2 with
 | [], _ -> []
 | _, [] -> []
 | h1 :: tl1, h2 :: tl2 -> (h1, h2) :: (zip tl1 tl2)
 end.

List Zip Preserves Length
Modified from hs-to-coq

 Proof Assistants (Part 1 of 5)

 1

 x

 2

 y

 3

 z

 4

53

Fixpoint zip {A B} (l1 : list A) (l2 : list B) : list (A * B) :=
 match l1, l2 with
 | [], _ -> []
 | _, [] -> []
 | h1 :: tl1, h2 :: tl2 -> (h1, h2) :: (zip tl1 tl2)
 end.

List Zip Preserves Length
Modified from hs-to-coq

 Proof Assistants (Part 1 of 5)

 1

 x

 2

 y

 3

 z

 4

(3, z)(1, x) (2, y)

54

Fixpoint zip {A B} (l1 : list A) (l2 : list B) : list (A * B) :=
 match l1, l2 with
 | [], _ -> []
 | _, [] -> []
 | h1 :: tl1, h2 :: tl2 -> (h1, h2) :: (zip tl1 tl2)
 end.

List Zip Preserves Length
Modified from hs-to-coq

 Proof Assistants (Part 1 of 5)

 1

 x

 2

 y

 3

 z

 4

(3, z)(1, x) (2, y)

55

Fixpoint zip {A B} (l1 : list A) (l2 : list B) : list (A * B) :=
 match l1, l2 with
 | [], _ -> []
 | _, [] -> []
 | h1 :: tl1, h2 :: tl2 -> (h1, h2) :: (zip tl1 tl2)
 end.

List Zip Preserves Length
Modified from hs-to-coq

 Proof Assistants (Part 1 of 5)

 1

 x

 2

 y

 3

 z

(3, z)(1, x) (2, y)

56

Fixpoint zip {A B} (l1 : list A) (l2 : list B) : list (A * B) :=
 match l1, l2 with
 | [], _ -> []
 | _, [] -> []
 | h1 :: tl1, h2 :: tl2 -> (h1, h2) :: (zip tl1 tl2)
 end.

List Zip Preserves Length
Modified from hs-to-coq

 Proof Assistants (Part 1 of 5)

 1

 x

 2

 y

 3

 z

(3, z)(1, x) (2, y)

 1

 x

(3, z)(2, y)(1, x)

 4

57

Fixpoint zip {A B} (l1 : list A) (l2 : list B) : list (A * B) :=
 match l1, l2 with
 | [], _ -> []
 | _, [] -> []
 | h1 :: tl1, h2 :: tl2 -> (h1, h2) :: (zip tl1 tl2)
 end.

List Zip Preserves Length
Modified from hs-to-coq

 Proof Assistants (Part 1 of 5)

 1

 x

 2

 y

 3

 z

 4

(1, x) (3, z)(2, y)

List Zip Preserves Length

58

 zip

 Us Coq

✓

✓

✓

✓

 Proof

 zip preserves
 length

 Proof Assistants (Part 1 of 5)

Theorem zip_preserves_length :
 ∀ {A B} (l1 : list A) (l2 : list B),
 length l1 = length l2 →
 length (zip l1 l2) = length l1.

59

List Zip Preserves Length

 Proof Assistants (Part 1 of 5)

Theorem zip_preserves_length :
 ∀ {A B} (l1 : list A) (l2 : list B),
 length l1 = length l2 →
 length (zip l1 l2) = length l1.

60

 1

 x

 2

 y

 3

 z

List Zip Preserves Length

 length = 3

 length = 3

 Proof Assistants (Part 1 of 5)

Theorem zip_preserves_length :
 ∀ {A B} (l1 : list A) (l2 : list B),
 length l1 = length l2 →
 length (zip l1 l2) = length l1.

61

 1

 x

 2

 y

 3

 z

(3, z)(1, x) (2, y)

List Zip Preserves Length

 length = 3

 Proof Assistants (Part 1 of 5)

Theorem zip_preserves_length :
 ∀ {A B} (l1 : list A) (l2 : list B),
 length l1 = length l2 →
 length (zip l1 l2) = length l1.

62

 1

 x

 2

 y

 3

 z

(3, z)(1, x) (2, y)

List Zip Preserves Length

 length = 3

 Proof Assistants (Part 1 of 5)

Theorem zip_preserves_length :
 ∀ {A B} (l1 : list A) (l2 : list B),
 length (zip l1 l2) = min (length l1) (length l2).

63

 1

 x

 2

 y

 3

 z

(3, z)(1, x) (2, y)

List Zip Preserves Length

 length = 3

 4

 Proof Assistants (Part 1 of 5)

64

 zip

 Us Coq

✓

✓

✓

✓

 Proof

 zip preserves
 length

 Goal

List Zip Preserves Length

 Proof Assistants (Part 1 of 5)

List Zip Preserves Length

65

 zip

 Us Coq

✓

✓

✓

✓

 zip preserves
 length

 Proof

 Goal

 Proof Assistants (Part 1 of 5)

66

 Us Coq

✓

List Zip Preserves Length

Proof
Term

 Goal

Gallina

 Proof Assistants (Part 1 of 5)

67

 Us Coq

✓

List Zip Preserves Length

Proof
Term

Gallina

✗

 Proof Assistants (Part 1 of 5)

1. Proof Assistants
2. Symbolic Automation
3. Neural Automation
4. Building Bridges
5. Opportunities

68

Proof Automation
(The kind you’re used to.)

69 Symbolic Automation (Part 2 of 5)

Example: Tactics

70 Symbolic Automation (Part 2 of 5)

71

 zip

 Us Coq

✓

✓

✓

 Proof

 zip preserves
 length

 Goal

Example: Tactics

 Symbolic Automation (Part 2 of 5)

72

 zip

 Us Coq

✓

✓

✓

 zip preserves
 length

 Goal

 Proof

 Symbolic Automation (Part 2 of 5)

Example: Tactics

73

 Us Coq

 Tactic

 Goal

 Symbolic Automation (Part 2 of 5)

Example: Tactics

74

 Us Coq

 Tactic
induction

 Goal

 Symbolic Automation (Part 2 of 5)

Example: Tactics

75

 Us Coq

 Subgoal

induction
 Tactic

 prove the
 base case

 Symbolic Automation (Part 2 of 5)

Example: Tactics

76

 Us Coq

reflexivity
 Tactic

 Subgoal

 prove the
 base case

 Symbolic Automation (Part 2 of 5)

Example: Tactics

77

 Us Coq

 Tactic

 Subgoal

reflexivity

 now the
 next case

 Symbolic Automation (Part 2 of 5)

Example: Tactics

78

 Us Coq

 Tactic

 Subgoal

 Symbolic Automation (Part 2 of 5)

Example: Tactics

79

 Us Coq

 Tactic
 Proof
 Script

 Subgoal

 Symbolic Automation (Part 2 of 5)

Example: Tactics

80

 Us Coq

 Subgoal

 Tactic
 Proof
 Script

 Symbolic Automation (Part 2 of 5)

Example: Tactics

81

 Us Coq

 Tactic

Proof
Term

 Subgoal

 Symbolic Automation (Part 2 of 5)

Example: Tactics

82

 Us Coq

 Tactic

Proof
Term ✓

✓

 Subgoal

 Symbolic Automation (Part 2 of 5)

Example: Tactics

83

 Us Coq

 Type

 Tactic

Proof
Term Γ ⊢ t : T

✓

 Symbolic Automation (Part 2 of 5)

Example: Tactics

84

 Us Coq

 Tactic

List Zip Preserves Length

Γ ⊢ t : T

Certa
inty

 ✓

✓

 Symbolic Automation (Part 2 of 5)

85

 Us Coq

Proof
Script

List Zip Preserves Length

Γ ⊢ t : T

Certa
inty

 ✓

✓

Abstra
ctio

n

 Symbolic Automation (Part 2 of 5)

86

Abstra
ctio

n

Certa
inty

List Zip Preserves Length

 Symbolic Automation (Part 2 of 5)

87

Abstra
ctio

n

Certa
inty

List Zip Preserves Length

Induction => Induction Principles

 Symbolic Automation (Part 2 of 5)

88

Abstra
ctio

n

Certa
inty

List Zip Preserves Length

Induction => Induction Principles

 Symbolic Automation (Part 2 of 5)

Tactics
Reflection
Custom proof modes
Proof procedures
Plugins
Proof repair
Hammers

89

Kinds of Automation

 Symbolic Automation (Part 2 of 5)

Tactics
Reflection
Custom proof modes
Proof procedures
Plugins
Proof repair
Hammers

90

Kinds of Automation

 Symbolic Automation (Part 2 of 5)

This automation can do
basically anything, yet still
preserve correctness.

91 Symbolic Automation (Part 2 of 5)

De Bruijn Criterion

92 Symbolic Automation (Part 2 of 5)

93

Producing the Proof

Checking the Proof

 Symbolic Automation (Part 2 of 5)

94

Producing the Proof

Checking the Proof

 Symbolic Automation (Part 2 of 5)

95

Producing the Proof

Checking the Proof

 Tactics

 Symbolic Automation (Part 2 of 5)

96

Producing the Proof

Checking the Proof

Domain-Specific Heuristics

 Tactics

 Symbolic Automation (Part 2 of 5)

97

Producing the Proof

Checking the Proof

Domain-Specific Heuristics

Proof Transformations

 Tactics

 Symbolic Automation (Part 2 of 5)

98

Producing the Proof

Checking the Proof

Domain-Specific Heuristics

Proof Transformations

 Tactics

 Symbolic Automation (Part 2 of 5)

Scary Programs

99

Producing the Proof

Checking the Proof

Domain-Specific Heuristics

Proof Transformations

 Tactics

 Symbolic Automation (Part 2 of 5)

Scary Programs

100

Producing the Proof

Checking the Proof

Domain-Specific Heuristics

Proof Transformations

Small & Human-Readable Logic/Type Checker

 Tactics

 Symbolic Automation (Part 2 of 5)

Scary Programs

101

Producing the Proof

Checking the Proof

Domain-Specific Heuristics

Proof Transformations

 Small Logical Kernel

 Tactics

 Symbolic Automation (Part 2 of 5)

Scary Programs

With de Bruijn, as long as
you don’t touch the kernel,
your automation is safe.

102 Symbolic Automation (Part 2 of 5)

With de Bruijn, as long as
you don’t touch the kernel,
your automation is safe.*
(If your specification is OK,
your kernel has no bugs, and
you don’t introduce axioms)

103 Symbolic Automation (Part 2 of 5)

* If your specification is OK, your kernel has no bugs,
 and you don’t assume contradictory or false axioms.

Symbolic automation:
 + predictable
 + dependable
 + understandable
 - limited in scope
 - takes expertise to extend

104 Symbolic Automation (Part 2 of 5)

Symbolic proof repair:
 + predictable
 + dependable
 + understandable
 - limited in scope
 - takes expertise to extend

105 Symbolic Automation (Part 2 of 5)

106Traditional Automation (Part 2 of 5)

Example: Proof Repair

PLDI 2021
ITP 2019

CPP 2018PhD Thesis

 Symbolic Automation (Part 2 of 5)

107Traditional Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)

PLDI 2021

PhD Thesis

 Symbolic Automation (Part 2 of 5)

You have changed a
datatype, and now the
standard library is broken!

108

108 Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)

Inductive list T :=
| nil : list T
| cons : T → list T → list T

(* Repair all 451 functions & proofs: *)
Repair Module Old.list New.list in StdLib.

109

109 Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)

Inductive list T :=
| cons : T → list T → list T
| nil : list T

(* Repair all 451 functions & proofs: *)
Repair Module Old.list New.list in StdLib.

110

110

Example: Proof Repair (PUMPKIN Pi)

 Symbolic Automation (Part 2 of 5)

Inductive list T :=
| cons : T → list T → list T
| nil : list T

(* Repair all 451 functions & proofs: *)
Repair Module Old.list New.list in StdLib.

111

111 Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)

451 functions & proofs,
25 seconds

Traditional proof repair:
 + predictable
 + dependable
 + understandable
 - limited in scope
 - takes expertise to extend

112 Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)

PUMPKIN Pi supports
any change described
by a type equivalence.

113

113

The Univalent Foundations Program. 2013. Homotopy
Type Theory: Univalent Foundations of Mathematics.
Institute for Advanced Study.

 Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Predictable (Equivalences), Dependable

PUMPKIN Pi supports
any change described
by a type equivalence.

114

114

The Univalent Foundations Program. 2013. Homotopy
Type Theory: Univalent Foundations of Mathematics.
Institute for Advanced Study.

 Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Predictable (Equivalences), Dependable

 New.list T
 swap

 swap_back

 Old.list T

115

115 Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Predictable (Equivalences), Dependable

 New.list T
 swap l

swap_back (swap l)

l :Old.list T

116

116 Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Predictable (Equivalences), Dependable

 l :New.list T
swap (swap_back l)

 swap l

Old.list T

117

117 Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Predictable (Equivalences), Dependable

 new
 update

 revert

 old

118

118 Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Predictable (Equivalences), Dependable

119

 Coq + PUMPKIN

old type new type

✓

Coq old function
 or proof

 new function
 or proof

 Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Predictable (Equivalences), Dependable

120

 Coq + PUMPKIN

old type new type

✓

Coq old function
 or proof

 new function
 or proof

 Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Predictable (Equivalences), Dependable

121

 Coq + PUMPKIN

old type new type

 Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Predictable (Equivalences), Dependable

 old function
 or proof

 new function
 or proof

✓

Coq

PUMPKIN Pi is
flexible & useful
for real scenarios.

122

122 Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Predictable (Equivalences), Dependable

123

1 Unary to binary (classic benchmark)

2 Modifying PL (user study)

3 Extending PL (user study)

4 Adding indices (ornaments)

5 Factoring constructors (reviewer)

6 Permute hypotheses (type theorist)

7 Vector to finite set (type theorist)

8 Industrial use (mixed methods)

123 Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Predictable (Equivalences), Dependable

Symbolic proof repair:
 + predictable
 + dependable
 + understandable
 - limited in scope
 - takes expertise to extend

124 Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)

Symbolic proof repair:
 + predictable
 + dependable
 + understandable* (for type nerds)
 - limited in scope
 - takes expertise to extend

125 Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)

126

126

Proof
Term

Repair
✓ ✓

Proof
Term

Certa
inty

Old Proof New Proof

Certa
inty

Example: Proof Repair (PUMPKIN Pi)
Understandable* (Transport as a Transformation)

 Symbolic Automation (Part 2 of 5)

127

127

Proof
Script

Proof
Term

Repair
✓ ✓

Proof
Term

Proof
Script

Abstra
ctio

n

Certa
inty

Abstra
ctio

n

Old Proof New Proof

Certa
inty

 Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Understandable* (Transport as a Transformation)

Transport: Rewriting
across Equivalences

128

The Univalent Foundations Program. 2013. Homotopy
Type Theory: Univalent Foundations of Mathematics.
Institute for Advanced Study.

 Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Understandable* (Transport as a Transformation)

Transport as a
Proof Term Transformation

129 Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Understandable* (Transport as a Transformation)

For type nerds:
Deconstruct Equivalence
(Lambek’s Theorem)

130

 Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Understandable* (Transport as a Transformation)

 B
 update

 revert

 A

131

131

 shape
 of A

 shape
 of B⇑

 Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Understandable* (Transport as a Transformation)

 B
 update

 revert

 A

132

132

 shape
 of A

 shape
 of B⇑

 Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Understandable* (Transport as a Transformation)

Symbolic proof repair:
 + predictable
 + dependable
 + understandable* (for type nerds)
 - limited in scope
 - takes expertise to extend

133 Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)

 two list queue
 ?

 ?

 one list queue

134

134 Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Limited Scope (Quotient Equivalences), Hard to Extend

Carlo Angiuli, Evan Cavallo, Anders Mörtberg,
and Max Zeuner. Internalizing Representation
Independence with Univalence. POPL 2021.

 two list queue
 ?

 ?

 one list queue

135

135 Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Limited Scope (Setoid Equivalences), Hard to Extend

One PhD student,
one undergrad,
one advisor,
2.5 years.
Is this sustainable?

136

 Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Limited Scope (Setoid Equivalences), Hard to Extend

2.5 years later…

"While the reviewers agree that this
article tackles an interesting problem,
its contributions with respect to
pre-existing and related work appear
too incremental and limited in scope."

137

 Symbolic Automation (Part 2 of 5)

Example: Proof Repair (PUMPKIN Pi)
Limited Scope (Setoid Equivalences), Hard to Extend

2.5 years later…

1. Proof Assistants
2. Symbolic Automation
3. Neural Automation
4. Building Bridges
5. Opportunities

138

Neural automation:
 - unpredictable
 - not dependable
 - not understandable
 + not very limited in scope
 + takes little expertise to extend

139 Neural Automation (Part 3 of 5)

Important note:
Neural proof automation is not brand
new! It is just growing in popularity.

140

 Neural Automation (Part 3 of 5)

ESEC/FSE 2023
Distinguished Paper

ITP 2023

ICSE Demo 2023

Growing Interest

TOPLAS Vol. 45, Issue 2:
No. 12, pp 1-30, 2023

 Neural Automation (Part 3 of 5)

ESEC/FSE 2023
Distinguished Paper

ITP 2023

ICSE Demo 2023

First Project: Passport

TOPLAS Vol. 45, Issue 2:
No. 12, pp 1-30, 2023

 Neural Automation (Part 3 of 5)

Addition of real
numbers is
commutative

forall r1 r2: R,
Rplus r1 r2 = Rplus r2 r1

Next Tactic

First Project: Passport

 Neural Automation (Part 3 of 5)

Category Vocabulary
Indexing

Subword Sequence
Modeling

Path Elaboration

forall r1 r2: R,
Rplus r1 r2 = Rplus r2 r1

First Project: Passport

 Neural Automation (Part 3 of 5)

Next TacticProof State

Core Model

100101110100
011001001101

Encoded
Proof State

First Project: Passport

 Neural Automation (Part 3 of 5)

Neural automation:
 - unpredictable
 - not dependable
 - not understandable
 + not very limited in scope
 + takes little expertise to extend

146

First Project: Passport

 Neural Automation (Part 3 of 5)

● Yang and Deng 2019
● Mathematical formalizations, proven correct

programs, and Coq automation libraries
● 123 open-source Coq projects
● Trained on 97 projects (57,719 theorems)
● Tested on 26 projects (10,782 theorems)

147

CoqGym

First Project: Passport – Big Scope

 Neural Automation (Part 3 of 5)

We can prove 45% more theorems than before!

First Project: Passport – Big Scope

 Neural Automation (Part 3 of 5)

Diversity brings even higher returns!
64% more theorems than the baseline!

First Project: Passport – Big Scope

 Neural Automation (Part 3 of 5)

150

First Project: Passport – Easy to Extend
● Some easy Python scripts on top of

someone else’s existing project
● Parallelized work for different extensions

between me and five other authors
● Undergraduate implemented most

challenging extension in an order of weeks
● Scripts were simple and fun enough that I

got excited when writing one in between
drafting thesis chapters, ran into a couch,
and broke my big toe

 Neural Automation (Part 3 of 5)

Language models:
 - unpredictable
 - not dependable
 - not understandable
 + not very limited in scope
 + takes little expertise to extend

151

First Project: Passport

 Neural Automation (Part 3 of 5)

152

First Project: Passport – Confusion
● Somehow, the name of the user running the

training script impacted the file order, which
impacted the results of training a model on
identical data in an identical way

● We found a nondeterminism bug in Pytorch
● Some combinations of extensions worked

mysteriously poorly, even though all
together they helped

● Apparently this is just life with even small
LMs? Is this life now? Help?

 Neural Automation (Part 3 of 5)

ESEC/FSE 2023
Distinguished Paper

ITP 2023

ICSE Demo 2023

More in the Paper!

TOPLAS Vol. 45, Issue 2:
No. 12, pp 1-30, 2023

 Neural Automation (Part 3 of 5)

ESEC/FSE 2023
Distinguished Paper

ITP 2023

ICSE Demo 2023

Since Then

TOPLAS Vol. 45, Issue 2:
No. 12, pp 1-30, 2023

 Neural Automation (Part 3 of 5)

ESEC/FSE 2023
Distinguished Paper

ITP 2023

ICSE Demo 2023

Second Project: Proofster

TOPLAS Vol. 45, Issue 2:
No. 12, pp 1-30, 2023

 Neural Automation (Part 3 of 5)

https://proofster.cs.umass.edu/ (web)
https://github.com/agrarpan/coq-synthesis (plugin)

Second Project: Proofster

 Neural Automation (Part 3 of 5)

https://proofster.cs.umass.edu/
https://github.com/agrarpan/coq-synthesis

Second Project: Proofster

 Neural Automation (Part 3 of 5)
Uses https://github.com/cpitclaudel/alectryon

https://github.com/cpitclaudel/alectryon

ESEC/FSE 2023
Distinguished Paper

ICSE Demo 2023

Third Project: PRISM

TOPLAS Vol. 45, Issue 2:
No. 12, pp 1-30, 2023

ITP 2023

 Neural Automation (Part 3 of 5)

● Dataset for proof repair models for Coq
● Actual proof repairs by proof engineers
● Collaboration with Radiance
● Massive infrastructure undertaking

○ Building many different projects
○ … with many different Coq versions
○ … for many different commits
○ … and aligning data across commit pairs

● First repair model trained
● Evaluation WIP

Third Project: PRISM

 Neural Automation (Part 3 of 5)

ICSE Demo 2023

Fourth Project: Baldur

TOPLAS Vol. 45, Issue 2:
No. 12, pp 1-30, 2023

ITP 2023

ESEC/FSE 2023
Distinguished Paper

 Neural Automation (Part 3 of 5)

● Using an LLM, one could, conceivably,
synthesize entire proofs at once.

● Collaborating with Google, we fine-tuned the
Minerva model to synthesize proofs in
Isabelle/HOL

● Evaluated on PISA dataset (theorems in
Isabelle/HOL)

Fourth Project: Baldur

 Neural Automation (Part 3 of 5)

Fourth Project: Baldur

 Neural Automation (Part 3 of 5)

● Baldur (without repair) can synthesize whole
proofs for 47.9% of the theorems, whereas
search-based approaches prove 39.0%.

● Baldur can repair its own erroneous proof
attempts using the error message from the
proof assistant, proving another 1.5%.

● Diversity continues to help. Together with
Thor, a tool that combines a model, search,
and a hammer, Baldur can prove 65.7%.

Fourth Project: Baldur

 Neural Automation (Part 3 of 5)

Neural automation:
 - unpredictable
 - not dependable
 - not understandable
 + not very limited in scope
 + takes little expertise to extend

164 Neural Automation (Part 3 of 5)

165

Producing the Proof

Checking the Proof

Domain-Specific Heuristics

Proof Transformations

 Small Logical Kernel

 Tactics

Scary Programs

 Neural Automation (Part 3 of 5)

166

Producing the Proof

Checking the Proof

Domain-Specific Heuristics

Proof Transformations

 Small Logical Kernel

 Tactics

ChatGPT

 Neural Automation (Part 3 of 5)

167

Producing the Proof

Checking the Proof

 Tactics

Domain-Specific Heuristics

Proof Transformations

Neural Networks

 Small Logical Kernel

Already Neurosymbolic

 Neural Automation (Part 3 of 5)

But we want even more of
the benefits of both kinds of
automation.

168 Neural Automation (Part 3 of 5)

1. Proof Assistants
2. Symbolic Automation
3. Neural Automation
4. Building Bridges
5. Opportunities

169

Observation 1: We can do
fairly well sometimes
without search. Maybe we
can use search at a higher
level than before and get
further returns?

170 Building Bridges (Part 4 of 5)

One idea: Move the search
process up in abstraction.

171 Building Bridges (Part 4 of 5)

One idea: Move the search
process up in abstraction.

172 Building Bridges (Part 4 of 5)

173 Best of Both Worlds (Part 4 of 5)

Proof Search

 Building Bridges (Part 4 of 5)

174 Best of Both Worlds (Part 4 of 5)

Conversational Action Search

AITP 2023

 Building Bridges (Part 4 of 5)

175 Best of Both Worlds (Part 4 of 5)

Conversational Action Search

Prove Theorem

Look Up
Definition

Write Proof

Revise Proof

Run Premise
Selection

Write Proof

QEDInvoke Critic

 Building Bridges (Part 4 of 5)

176 Best of Both Worlds (Part 4 of 5)

Conversational Action Search

Prove Theorem

Look Up
Definition

Write Proof

Revise Proof

Run Premise
Selection

Write Proof

QEDInvoke Critic

 Building Bridges (Part 4 of 5)

177 Best of Both Worlds (Part 4 of 5)

Conversational Action Search

Prove Theorem

Look Up
Definition

Write Proof

Revise Proof

Run Premise
Selection

Write Proof

QEDInvoke Critic

$$$

 Building Bridges (Part 4 of 5)

178 Best of Both Worlds (Part 4 of 5)

Conversational Action Search

Prove Theorem

Look Up
Definition

Write Proof

Revise Proof

Run Premise
Selection

Write Proof

QEDInvoke Critic

$$$ Context Size

 Building Bridges (Part 4 of 5)

179 Best of Both Worlds (Part 4 of 5)

Conversational Action Search

Prove Theorem

Look Up
Definition

Write Proof

Revise Proof

Run Premise
Selection

Write Proof

QEDInvoke Critic

$$$ Context Size

 Building Bridges (Part 4 of 5)

Hard to Engineer

Promising Results

180

Conversational Action Search

 Building Bridges (Part 4 of 5)

Observation 2: Diversity in
models helps, and diversity
in techniques appears to
help, too. Let’s keep taking
advantage of that.

181 Building Bridges (Part 4 of 5)

Ongoing: Best of both
worlds for proof repair, too.

182 Building Bridges (Part 4 of 5)

183 Building Bridges (Part 4 of 5)

Neural proof repair: good for
large, repetitive, mostly syntactic
changes at the tactic level, like
from updating Coq versions

Symbolic proof repair: good for
well-scoped semantic changes
at the term level, like those
described by equivalences

184 Building Bridges (Part 4 of 5)

Neural proof repair: good for
large, repetitive, mostly syntactic
changes at the tactic level, like
from updating Coq versions

Symbolic proof repair: good for
well-scoped semantic changes
at the term level, like those
described by equivalences

185 Building Bridges (Part 4 of 5)

Neurosymbolic proof repair:
good for large, repetitive, mostly
syntactic changes at the tactic
level, like from updating Coq
versions? And also, good for
well-scoped semantic changes
at the term level, like those
described by equivalences?
Better than the sum of its parts?

186 Building Bridges (Part 4 of 5)

Neurosymbolic proof repair:
good for large, repetitive, mostly
syntactic changes at the tactic
level, like from updating Coq
versions? And also, good for
well-scoped semantic changes
at the term level, like those
described by equivalences?
Better than the sum of its parts?

1. Proof Assistants
2. Symbolic Automation
3. Neural Automation
4. Building Bridges
5. Opportunities

187

So far I’ve assumed the
specification already exists.

188 Opportunities (Part 5 of 5)

189

 Program

Proof Engineer Proof Assistant

✓

✓

✓

✓

Specification

 Proof

Tree Proofs for Free?

 Opportunities (Part 5 of 5)

190

Tree Proofs for Free?

Inductive isLeft {A} : @tree A -> @tree A -> Prop :=
| LeafLeaf : ∀ x, isLeft (Leaf x) (Leaf x)
| NodeLeft : ∀ x l r, isLeft (Leaf x) l -> isLeft (Leaf x) (Node l r)
| NodeRight : ∀ x l r,
 r <> Leaf x -> isLeft (Leaf x) r -> isLeft (Leaf x) (Node l r).

Definition forall_Left {A} (P : @tree A -> Prop) (t : @tree A) :=
 ∀ l, isLeft l t -> P l.

Definition lift_to_tree_prop {A} (P : A -> bool) : @tree A -> Prop :=
 fun l => exists x, l = Leaf x /\ P x = true.

Theorem forall_left_leaves_correct {A} : ∀ pred (t : @tree A),
 (forall_Left (lift_to_tree_prop pred) t) <->
 (@forall_left_leaves A pred t = true).

 Opportunities (Part 5 of 5)

What can we do to help
people specify software, or
conjecture in mathematics?
This is risky, but promising.

191 Opportunities (Part 5 of 5)

What can we do to help
people specify software, or
conjecture in mathematics?
This is risky, but promising.

192 Opportunities (Part 5 of 5)

Key Challenge:
There is no oracle for a
specification!

193 Opportunities (Part 5 of 5)

194

No Oracle for Specification

even
2

3 4 true …

 Opportunities (Part 5 of 5)

195

Inductive isLeft {A} : @tree A -> @tree A -> Prop :=
| LeafLeaf : ∀ x, isLeft (Leaf x) (Leaf x)
| NodeLeft : ∀ x l r, isLeft (Leaf x) l -> isLeft (Leaf x) (Node l r)
| NodeRight : ∀ x l r,
 r <> Leaf x -> isLeft (Leaf x) r -> isLeft (Leaf x) (Node l r).

Definition forall_Left {A} (P : @tree A -> Prop) (t : @tree A) :=
 ∀ l, isLeft l t -> P l.

Definition lift_to_tree_prop {A} (P : A -> bool) : @tree A -> Prop :=
 fun l => exists x, l = Leaf x /\ P x = true.

Theorem forall_left_leaves_correct {A} : ∀ pred (t : @tree A),
 (forall_Left (lift_to_tree_prop pred) t) <->
 (@forall_left_leaves A pred t = true).

No Oracle for Specification

 Opportunities (Part 5 of 5)

196

Inductive isLeft {A} : @tree A -> @tree A -> Prop :=
| LeafLeaf : ∀ x, isLeft (Leaf x) (Leaf x)
| NodeLeft : ∀ x l r, isLeft (Leaf x) l -> isLeft (Leaf x) (Node l r).
| NodeRight : ∀ x l r,
 r <> Leaf x -> isLeft (Leaf x) r -> isLeft (Leaf x) (Node l r).

Definition forall_Left {A} (P : @tree A -> Prop) (t : @tree A) :=
 ∀ l, isLeft l t -> P l.

Definition lift_to_tree_prop {A} (P : A -> bool) : @tree A -> Prop :=
 fun l => exists x, l = Leaf x /\ P x = true.

Theorem forall_left_leaves_correct {A} : ∀ pred (t : @tree A),
 (forall_Left (lift_to_tree_prop pred) t) <->
 (@forall_left_leaves A pred t = true).

No Oracle for Specification

 Opportunities (Part 5 of 5)

let tree = Node (Leaf 2, Node (Leaf 4, Leaf 3))
let () = Printf.printf "%b\n"
 (check_predicate_left_leaves is_even tree) (* true *)

let tree = Node (Leaf 2, Node (Leaf 3, Leaf 4))
let () = Printf.printf "%b\n"
 (check_predicate_left_leaves is_even tree) (* true *)

let tree = Node (Leaf 3, Node (Leaf 2, Leaf 4))
let () = Printf.printf "%b\n"
 (check_predicate_left_leaves is_even tree) (* false *)

197

No Oracle for Specification

 Opportunities (Part 5 of 5)

Here are some example input/output pairs that satisfy
the specification I have generated for you:

One of these examples looks wrong. The following
code should print false since 3 is not even:

 let tree = Node (Leaf 2, Node (Leaf 3, Leaf 4))
 let () = Printf.printf "%b\n"
 (check_predicate_left_leaves is_even tree) (* false *)

198 Opportunities (Part 5 of 5)

No Oracle for Specification

199

Inductive isLeft {A} : @tree A -> @tree A -> Prop :=
| LeafLeaf : ∀ x, isLeft (Leaf x) (Leaf x)
| NodeLeft : ∀ x l r, isLeft (Leaf x) l -> isLeft (Leaf x) (Node l r)
| NodeRight : ∀ x l r, isLeft (Leaf x) r -> isLeft (Leaf x) (Node l r).

No Oracle for Specification

 Opportunities (Part 5 of 5)

I see, so you want to consider nodes that occur in right
branches too. How is this?

200

No Oracle for Specification

 Opportunities (Part 5 of 5)

Close! But I don’t want that NodeRight case to hold
when r is a leaf, otherwise it will just include all leaves,
not just the left ones. For example, this test case you
generated should still print true, but now it is false:

let tree = Node (Leaf 2, Node (Leaf 4, Leaf 3))
let () = Printf.printf "%b\n"
 (check_predicate_left_leaves is_even tree) (* false *)

201

Inductive isLeft {A} : @tree A -> @tree A -> Prop :=
| LeafLeaf : ∀ x, isLeft (Leaf x) (Leaf x)
| NodeLeft : ∀ x l r, isLeft (Leaf x) l -> isLeft (Leaf x) (Node l r)
| NodeRight : ∀ x l r,
 r <> Leaf x -> isLeft (Leaf x) r -> isLeft (Leaf x) (Node l r).

No Oracle for Specification

 Opportunities (Part 5 of 5)

Understood. How is this?

202

Inductive isLeft {A} : @tree A -> @tree A -> Prop :=
| LeafLeaf : ∀ x, isLeft (Leaf x) (Leaf x)
| NodeLeft : ∀ x l r, isLeft (Leaf x) l -> isLeft (Leaf x) (Node l r)
| NodeRight : ∀ x l r,
 r <> Leaf x -> isLeft (Leaf x) r -> isLeft (Leaf x) (Node l r).

No Oracle for Specification

 Opportunities (Part 5 of 5)

LGTM! Passes all tests.

203

 let rec check_predicate_left_leaves predicate tree =
 let rec aux is_left = function
 | Leaf x -> if is_left then predicate x else true
 | Node (left, right) -> (aux true left) && (aux false right)
 in aux true tree

 let tree = Node (Leaf 2, Node (Leaf 3, Leaf 4))
 let () = Printf.printf "%b\n"
 (check_predicate_left_leaves is_even tree)

No Oracle for Specification

 Opportunities (Part 5 of 5)

OK, then the generated code is wrong. Here is updated
code that satisfies the specification:

204

No Oracle for Specification

 Opportunities (Part 5 of 5)

I’ve proven it satisfies the specification in Coq for you.

Theorem forall_left_leaves_correct {A} : ∀ pred (t : @tree A),
 (forall_Left (lift_to_tree_prop pred) t) <->
 (@forall_left_leaves A pred t = true).
Proof.
 unfold forall_left_leaves, forall_Left, lift_to_tree_prop. split.
 - intros. apply aux_correct. auto.
 - induction t; intros.
 + edestruct H. inversion H0. subst. exists a. split; auto.
 + simpl in H. inversion H0; subst.
 * apply IHt1; auto. destruct (aux pred true t1) eqn:b1; auto.
 * apply IHt2; auto. destruct (aux pred false t2) eqn:b2.
 -- destruct t2; auto. inversion H5. subst. destruct H4. auto.
 -- destruct (aux pred true t1) eqn:b1; discriminate.
Qed.

205

 Program

Proof Engineer Proof Assistant

✓

✓

✓

✓

Specification

 Proof

Tree Proofs for Free!

 Opportunities (Part 5 of 5)

Open Question:
What tools can best help
users make sense of
generated theorems?
What information presented
in what ways best helps
users ensure that they
match their intentions?

206 Opportunities (Part 5 of 5)

