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Tree Functions with ChatGPT
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Tree Functions with ChatGPT

true ...



Tree Functions with ChatGPT

The code you provided doesn't count left

leaves that occur on right branches, but | want it to.
Can you fix it so that it does? For example, this code
should print false since 3 is not even:

-
let tree = Node (Leaf 2, Node (Leaf 3, Leaf 4))
let () = Printf.printf "%b\n"
(check_predicate_left_leaves is_even tree)

10



Tree Functions with ChatGPT

6
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let rec check_predicate_left_leaves predicate tree =
et rec aux is_left = function
Leaf x -> if is_left then predicate x else true

In aux true tree

let tree = Node (Leaf 2, Node (Leaf 3, Leaf 4))
let () = Printf.printf "%b\n"
(check_predicate_left_leaves is_even tree)

Node (left, right) -> (aux true left) && (aux false right)
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Tree Functions with ChatGPT

6
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let rec check_predicate_left_leaves predicate tree =
et rec aux is_left = function
Leaf x -> if is_left then predicate x else true

In aux true tree

let tree = Node (Leaf 2, Node (Leaf 3, Leaf 4))
let () = Printf.printf "%b\n"
ucheck_predicate_left_leaves is_even tree)

Node (left, right) -> (aux true left) && (aux false right)
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Passes test!
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Tree Functions with ChatGPT

let rec check_predicate_left_leaves predicate tree =
et rec aux is_left = function

Leaf x -> if is_left then predicate x else true

Node (left, right) -> (aux true left) && (aux false right)
In aux true tree

let tree = Node (Leaf 2, Node (Leaf 3, Leaf 4))
let () = Printf.printf "%b\n"
Qcheck_predicate_left_leaves is_even tree)

Passes test!
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Proof Assistants for Verification
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Proof Assistants for Verification
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Proof Assistants for Verification
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Proof Assistants for Verification

nar *EXP_COM(]
char *RV_TIME()

int summary(

{
char *str = |
st board *board = 2t St
int ret = 9§

char *ptr_Shutterceusss

Compilers

Machine Learning
Systems Operating Systems Quantum Optimizers

Talia Ringer, Karl Palmskog, llya Sergey, Milos Gligoric and Zachary Tatlock (2019),
QED at Large: A Survey of Engineering of Formally Verified Software, Foundations
and Trends in Programming Languages: Vol. 5, No. 2-3, pp 102-281.
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Proof Assistants for Math

April 29, 2024 - May 29, 2024 Period: 1 month ~
Overview

E——
23 Active issues

=
263 Active pull requests

f- 18 19 245 ©12 oM

Merged pull requests Open pull requests Closed issues New issues

Excluding merges, 145 authors have pushed 634 commits 400
to master and 4,638 commiits to all branches. On master, ‘
3,248 files have changed and there have been 76,129

additions and 50,531 deletions.
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g~ 18 Pull requests merged by 4 people

https://qithub.com/leanprover-community/mathlib4/pulse/monthly



https://github.com/leanprover-community/mathlib4/pulse/monthly

It's still hard to write proofs.

22



Proof automation makes it
easier to develop and
maintain formal proofs
using proof assistants.



Traditional automation



Symbolic automation



Symbolic automation:

+ predictable

+ dependable

+ understandable

- limited In scope

- takes expertise to extend



Neural automation:

- unpredictable

- not dependable

- not understandable

+ not very limited in scope

+ can take little expertise to extend



A

Best of both worlds?

+ predictable

+ dependable

+ understandable

+ not very limited in scope

+ can take little expertise to extend



A
Though proof assistants
have come a long way,
they are still hard for most

people to use. We can
make this easier.




A

Though proof assistants
have come a long way,
they are still hard for most
people to use. We must
make this easier, now.




We Must Make Proofs Easier, Now

true ...



We Must Make Proofs Easier, Now -

let rec check_predicate_left_leaves predicate tree =
et rec aux is_left = function

Leaf x -> if is_left then predicate x else true

Node (left, right) -> (aux true left) && (aux false right)
In aux true tree

let tree = Node (Leaf 2, Node (Leaf 3, Leaf 4))
let () = Printf.printf "%b\n"
Qcheck_predicate_left_leaves is_even tree)

Passes test!
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Proof Engineer Proof Assistant
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Proof Assistants (Part 1 of 5)




List Zip Preserves Length

Proof Assistant

n =

Zip preserves
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Coq (CIC)

n =

Zip preserves
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Lean (CIC + UIP)

!73 -

Zip preserves
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Cubical Agda (Cubical)
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Zip preserves
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Isabelle/HOL (HOL)

!73 -

Zip preserves
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Coq

n =

Zip preserves
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List Zip Preserves Length

Inductive list T =
| nil ; listT
lcons: T —listT —listT

Proof Assistants (Part 1 of 5) _



List Zip Preserves Length

Inductive list T :=
| nil ; listT
lcons: T —listT —listT

Proof Assistants (Part 1 of 5) _



List Zip Preserves Length

Inductive list T :=
| nil : listT (*[] %)
lcons: T —listT —listT

Proof Assistants (Part 1 of 5) _



List

Inductive list T :=
| nil : listT
lcons : T — listT

1
82—

Proof Assistants (Part 1 of 5) _



List

Inductive list T ;=
| nil : listT
lcons: T — listT — listT

a8 8

Proof Assistants (Part 1 of 5) _



List Length

Inductive list T :=
|nil :list T (*[]%)
lcons: T —listT—listT (*1:1%)

length : list T — nat

i I
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- //v C

Proof Assistants (Part 1 of 5) _



List Zip
Coq

n =

Zip preserves
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List Zip

Modified from hs-to-coq

Fixpoint zip {A B} (11 : list A) (12 : list B)

a8
a—a—a
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List Zip

Modified from hs-to-coq

Fixpoint zip {A B} (I1 : list A) (12 : list B) : list (A * B)
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List Zip

Modified from hs-to-coq

Fixpoint zip {A B} (I1 : list A) (12 : list B) : list (A * B)
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List Zip

Modified from hs-to-coq

Fixpoint zip {A B} (I1 : list A) (12 : list B) : list (A * B)
match I1, |2 with

111, -->1]
| [1->11

Proof ASS|stants (Part 1 0of 5) _



List Zip

Modified from hs-to-coq

Fixpoint zip {A B} (I1 : list A) (12 : list B) : list (A * B)
match I1, |2 with
[ —->1]

s> 1]
h1:1l1,h2 ::tl12 -> (h1, h2)
end.

E—>H—>ﬂ

l—>ﬂ

Proof Assistants (Part 1 of 5) _



List Zip

Modified from hs-to-coq

Fixpoint zip {A B} (I1 : list A) (12 : list B) : list (A * B)
match I1, |2 with

[l _->1]

[>T
h1:tl1,h2 ::tl12 -> (h1, h2) :: (zip tI1 t12)

end.

Proof Assistants (Part 1 of 5) _



List Zip Preserves Length
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Zip preserves
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List Zip Preserves Length

Theorem zip_preserves_length :
Vv {A B} (11 : list A) (12 : list B),

Proof Assistants (Part 1 of 5) _



List Zip Preserves Length

Theorem zip_preserves_length :
v {A B} (11 :list A) (12 : list B),
length |11 = length 12 —

length = 3

length = 3
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List Zip Preserves Length

Theorem zip_preserves_length :
v {A B} (I1: list A) (12 : list B),
length |1 = length [12 —
length (zip 11 12) = length I1.

length = 3

Proof Assistants (Part 1 of 5) _



List Zip Preserves Length \

Theorem zip_preserves_length :
v {A B} (I1: list A) (12 : list B),
length |1 = length [12 —
length (zip 11 12) = length I1.

length = 3

Proof Assistants (Part 1 of 5) _



List Zip Preserves Length

Theorem zip_preserves_length :
v {A B} (I1: list A) (12 : list B),
length (zip 11 12) = min (length I1) (Ilength 12).

length = 3

Proof Assistants (Part 1 of 5) _



List Zip Preserves Length
Coqg

n =

Zip preserves

length >

Goal

Proof Assistants (Part 1 of 5)




List Zip Preserves Length
Coqg

n =

Zip preserves

length >

Goal
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List Zip Preserves Length e “/’///%
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3. Neural Automation

4. Building Bridges

5. Opportunities



4 | WO,
o.' '_‘. ‘.°

Proof Automation

(The kind you're used to.)

Symbolic Automation (Part 2 of 5) .



Example: Tactics
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Example: Tactics
Coqg
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Zip preserves
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Zip preserves

length >

Goal
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Example: Tactics A& ///%
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Example: Tactics % / ///%

prove the
base case

@ N Subgoal
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Example: Tactics % '//////%

prove the
base case

@ N Subgoal
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Example: Tactics e ///%

now the
hext case

@ N Subgoal

Us
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Example: Tactics Wl //%
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Example: Tactics @ s ///%
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Example: Tactics
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Example: Tactics
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List Zip Preserves Length

intros T1 T2 11. induction 1;! as [|t; t1; IHt14].
- auto.?
- intros 12. induction 12 as [|t, tlp, IHtl,].
+ intros H. auto.*
+ intros H. simpl. rewrite IHtl;; auto.®

1=l

fun (T; Tp : Type) (17 : list T1) (1 : list Tp) =>
list_rect®! (fun (1; : list Ty) => ...)
(fun (1 : 1list Tp) _ => eq_refl)?

(fun (tq : Ty) (813 ¢ List Ty) (THEL; : <) (Ao : list Tp) =>
listirect® (fun (1 : list Tp) => ...)
(fun (H : ...) => eq_sym H)*
(fun (tp : T7) (tlp : list Tp) (IHtly : ...) =>
fun (H : ...) => eq_rect_r ... eq_refl (IHtl; ...)%)
1,3)
Tt

2. 7

Symbolic Automation (Part 2 of 5)



List Zip Preserves Length

induction 12%

Symbolic Automation (Part 2 of 5)8



List Zip Preserves Length

intros 12. induction 123 as [|t, tl, IHtl,].
+ intirosa H. fanto:!
+ intros H. simpl. rewrite IHtl;; auto.®

Induction => Induction Principles

list_rect® (fun (1, : list Tp) => ...)
(fun (H : ...) => eq_sym H)*
(fun (t2 : T7) (tlp : list Tp) (IHtl, : ...) =>
fun (H : ...) => eq_rect_r ... eq_refl (IHtl; ...)®)
1,%)

Symbolic Automation (Part 2 of 5)
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Kinds of Automation

Tactics

Symbolic Automation (Part 2 of 5) .,



Kinds of Automation

Tactics

Reflection

Custom proof modes
Proof procedures
Plugins

Proof repair
Hammers

Symbolic Automation (Part 2 of 5) ,



A

This automation can do
basically anything, yet still
preserve correctness.

Symbolic Automation (Part 2 of 5) ,



De Bruijn Criterion
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< Checking the Proof

Producing the Proof e
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< Checking the Proof

Producing the Proof e
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S Checking the Proof
Tactics AR -
Producing the Proof Tho
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< Checking the Proof

Tactics ~

Domain-Specific Heuristics TS ~

Producing the Proof e
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Tactics ~

Domain-Specific Heuristics TS ~

Proof Transformations RN

Producing the Proof e

Symbolic Automation (Part 2 of 5) .



Tactics ~

Domain-Specific Heuristics TS ~

~
~
~

Proof Transformations RN

~
~

Producing the Proof scaryprograms ™~ <

~
~
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S Checking the Proof

Tactics ~

Domain-Specific Heuristics S~ ~

~
~
~

Proof Transformations RN

~
~

Producing the Proof scaryprograms ~~ <

~
~
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< Checking the Proof

~
~

S Small & Human-Readable Logic/Type Checker

~

~
~
~
=~ ~
Tactics ~
~
~
~

Domain-Specific Heuristics S~ ~

~
~
~

Proof Transformations RN

~
~

Producing the Proof scaryprograms ~~ <

~
~

Symbolic Automation (Part 2 of 5)
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A

S Checking the Proof

S Small Logical Kernel

Tactics ~

Domain-Specific Heuristics S~ ~

~
~
~

Proof Transformations RN

~
~

Producing the Proof scaryprograms ~~ <

~
~

Symbolic Automation (Part 2 of 5) ,



A
With de Bruijn, as long as

you don't touch the kernel,
your automation is safe.

Symbolic Automation (Part 2 of 5) ,



A
With de Bruijn, as long as

you don't touch the kernel,
your automation is safe.”

" If your specification is OK, your kernel has no bugs,
and you don't assume contradictory or false axioms.

Symbolic Automation (Part 2 of 5) ,,



Symbolic automation:

+ predictable

+ dependable

+ understandable

- limited In scope

- takes expertise to extend

Symbolic Automation (Part 2 of 5) .,



Symbolic proof repair:
+ predictable

+ dependable

+ understandable

- limited In scope

- takes expertise to extend

Symbolic Automation (Part 2 of 5) .



xample: Proof Repair

Ornaments for Proof Reuse in Coq

Talia Ringer

University of Washington. USA
tringerfics. washington.edu
Nathaniel Yazdani
University of Washington, USA

nyazdani@es washington.edu

PROOF REPAIR

Talia Ringer

Chair of the Supervisory Committee:
Dan Grossman
Computer Science & Engineering

The days of verifying only toy programs are long gone
decades have marked a new era of verification at scale, b
guarantees to large and critical systems—an era of prg
Proof engineering is for verified systems what software |
for unverified systems. Still, while proof engineering—
engineering—is about both development and maintenany
engineering technologies so far have focused on develo

it comes to mai ® i
behind softwar P D I e s I s

This thesis i1 _ R cr---ch
ing verified systems. Proof repair reimacinec tha auta

engineers typically use to interactivel
machine-checked proof. When a syste

Adapting Proof Automation to Adapt Proofs

Talia Ringer
University of Washington, USA

John Leo
Halfaya Research, USA

Abstract

We extend proof automation in an interactive theorem prover
to analyze changes in specifications and proofs. Our approach
leverages the history of changes to specifications and proofs
to search for a patch that can be applied to other specifica-
tions and nraofs that need ta change in analogons wavs

Nathaniel Yazdani
University of Washington, USA

Dan Grossman
University of Washington, USA

the search

) ) “le.

This in tur to
““CPP 2018

Despite is-

tants is brivuc. sveu a i Cuange w a uctsuuun s uie-
orem can break many dependent proofs. This is a major
ants based

10w proofs,
stead, it is

proof about the system, traditional aut( 5 with sup-
John Leo proof from scratch. Proof repair, in ¢ . . tions, and
Halfaya Research, USA tomation: it determines how the systel Proof Repalr across Type Equlvalences “,’,’,llj-:,‘:

leoGihalfaya.org information to help fix the broken proc

S 4 A Talia Ringer RanDair Porter Nathaniel Yazdani bn that ac-
Dan Grossms Proof repair in this thesis works by co University of Washington University of Washington Northeastern University + program-
an Grossman : : : e Tk =, ) E
v gt Q@ algorithms with program transformatiol : ? /
University of Washington, USA tringer@cs.washington.edu randair@uw.edu yazdani.n@husky.neu.edu

ing and the transformations operate ow

djg@cs.washington.edu . -
I8 proofs called proof terms. Thanks to the John Leo Dan Grossman
S A 5 © Halfaya Research University of Washington
Abstract differencing and the transformations ¢ "USA " USA
strac . F A 7
results in dependent type theory. For ex leo@halfaya.org djg@cs.washington.edu
Ornaments express relations between inductive types with the same in¢ ternalizes univalent transport from hon  Apsiract 1. Introdiiction
implement fully automatic proof reuse for a particular class of ornaments in{  novel transformations over equalities t¢ e describe a new approach to automatically repairing bro-  Program verification with interactive theorem provers has
how such a tool can give programmers the rewards of using indexed inductive This approach is realized inside of a ken proofs in the Coq proof assistant in response to changes come a long way since its inception, especially when it comes
. o A « 3 A ~ . . . n types. Our approach combines a configurable proof term to the scale of programs that can be verified. The selL4 [21
away many of the costs. The plugin works directly on Coq code; it is the fi Coq proof assistant. Case studies show | YPes: “Ur aPPIBACh FOIINCS a COIE able proof ters 2 L e BN L g SR L e Y e e 21]
: A : ! ; ; transformation with a decompiler from proof terms to sug-  verified operating system kernel, for example, is the effort
for a non-embedded dependently typed language. It is also the first tool tg use that this proof repair tool suite can gested tactic scripts. The proof term transformation imple- of a team of proof engineers spanning more than a million
ornaments: To lift a function or proof, the user must provide only the souri on real proof developments. ments transport across equivalences in a way that removes lines of proof, costing over 20 person-years. Given a famous
references to the old version of the changed type and does 1977 critique of verification [12] (emphasis ours):

type. and the source function or j of the math e e

ornaments, our approach produces II I P 201 911'1111.\ than a more general approach

to proof reuse in Coq.

not rely on axioms beyond those Coq assumes.

We have implemented this approach in Pumpkix Pi, an
extension to the Puspkin Parcu Coq plugin suite for proof
repair. We demonstrate Pumpkin Pi’s flexibility on eight
case studies, including supporting a benchmark from a user
study, easing development with depandant fmac novtine  we conld arane that, over 40 years, either verification has

functions and proofs between unary esearchers have become more fanatical.
snd svppustiog n indutral proof e P I D I 202 1 all has changed (emphass sl oursk
between Coq and other verification t

A sufficiently fanatical researcher might be will-
ing to devote two or three years to verifying a
significant piece of software if he could be as-
sured that the software would remain stable.

programs need to be maintained

P . MG 7 TR [y WP 2 = and modifiedThere is no reason to helieve that
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Example: Proof Repair (PUMPKIN Pi)

PROOF REPAIR

Talia Ringer

Chair of the Supervisory Committee:
Dan Grossman
Computer Science & Engineering

The days of verifying only toy programs are long gon
decades have marked a new era of verification at scale, bi
guarantees to large and critical systems—an era of pr
Proof engineering is for verified systems what software
for unverified systems. Still, while proof engineering
engineering—is about both development and maintenan
engineering technologies so far have focused on develo
it comes to mai
behind softwar P h D T h es I s

This thesis it ___ -
ing verified systems. Proof repalr reimaecinoc “m ank
engineers typically use to interactivel
machine-checked proof. When a syste
proof about the system, traditional aut(
proof from scratch. Proof repair, in
tomation: it determines how the systel
information to help fix the broken prog

Proof Repair across Type Equivalences

S 4 _ Talia Ringer RanDair Porter Nathaniel Yazdani

Proof repair in this thesis works by co University of Washington University of Washington Northeastern University
algorithms with program transformatiol UsA USA UsA
o dibatnsfnradtions cpueits ol tringer@cs.washington.edu randair@uw.edu yazdani.n@husky.neu.edu

1S S 1
proofs called proof terms. Thanks to the John Leo Dan Grossman
b : : z Halfaya Research University of Washington

differencing and the transformations ¢ OSA A

results in dependent type theory. For ex leo@halfaya.org djg@cs.washington.edu

ternalizes univalent transport from hon  Apstract 1 Introduction

novel transformations over equahnes € We describe a new approach to automatically repairing bro- Program verification with interactive theorem provers has

This appmach is realized inside of a ken proofs in the Coq proof assistant in response to chfmges come a long way since its inception, especially when it comes

COq pl’OOf assistant. Case studies showl in types. Our approach combines a Fox\hgurable proof term to the scale of programs that can be verified. The seL4 [21]

S e PER Y transformation with a decompiler from proof terms to sug- verified operating system kernel, for example, is the effort

use that this proof repair tool suite can gested tactic scripts. The proof term transformation imple- of a team of proof engineers spanning more than a million

on real proof developments. ments transport across equivalences in a way that removes lines of proof, costing over 20 person-years. Given a famous
references to the old version of the changed type and does 1977 critique of verification [12] (emphasis ours):

| not rely on axioms beyond those Coq assumes.

We have implemented this approach in Pumpkin Pi, an
extension to the Pumpkin Patcu Coq plugin suite for proof
repair. We demonstrate Pumpkin Pi’s flexibility on eight
case studies, including supporting a benchmark from a user
study, easing development with depandant hmac nartina we conld arene that, over 40 years, either verification has

functions and proofs between unary esearchers have become more fanatical.
and supporting an industrial proof er P I D I Z 0 Z 1 all has changed (emphasis still ours):
between Coq and other verification t programs need to be maintained

£ and modified.There is no reason to believe that

A sufficiently fanatical researcher might be will-
ing to devote two or three years to verifying a
significant piece of software if he could be as-
sured that the software would remain stable.
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Example: Proof Repair (PUMPKIN Pi)

You have changed a
datatype, and now the
standard library is broken!

Symbolic Automation (Part 2 of 5)



Example: Proof Repair (PUMPKIN Pi)

Inductive list T :=
nil  list T \,'
lcons: T —listT — listT ‘

(* Repair all 451 functions & proofs: *)
Repair Module Old.list New.list in StdLib.

Symbolic Automation (Part 2 of 5)



Example: Proof Repair (PUMPKIN Pi)

Inductive list T :=
lcons: T - listT — listT ,’
| nil : listT ‘

(* Repair all 451 functions & proofs: *)
Repair Module Old.list New.list in StdLib.

Symbolic Automation (Part 2 of 5)



Example: Proof Repair (PUMPKIN Pi)

Inductive list T ;=
lcons . T — listT — listT
| nil : listT

L
N

(* Repair all 451 functions & proofs: *)
Repair Module Old.list New.list in StdLib.

451 functions & proofs,

25 seconds r

A
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Example: Proof Repair (PUMPKIN Pi)

Traditional proof repair:

+ predictable
+ dependable

Symbolic Automation (Part 2 of 5)



Example: Proof Repair (PUMPKIN Pi)

Predictable (Equivalences)

PUMPKIN Pi supports
any change described
by a type equivalence.

Symbolic Automation (Part 2 of 5)



Example: Proof Repair (PUMPKIN Pi)

Predictable (Equivalences)

PUMPKIN Pi supports
any change described
by a type equivalence.

The Univalent Foundations Program. 2013. Homotopy

Type Theory: Univalent Foundations of Mathematics.
Institute for Advanced Studly.

Symbolic Automation (Part 2 of 5) .



Example: Proof Repair (PUMPKIN Pi)

Predictable (Equivalences)

— swap A
Old.list T New.list T
— _—

swap_back
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Example: Proof Repair (PUMPKIN Pi)

Predictable (Equivalences)

— swap | —A
| :0ld.list T New.list T
— _—

swap_back (swap |)
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Example: Proof Repair (PUMPKIN Pi)

Predictable (Equivalences)

— swap (swap_back ) —™=a
Old.list T | :New.list T
W _——

swap |
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Example: Proof Repair (PUMPKIN Pi)

Predictable (Equivalences)

— update A
old new
— ——

revert
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Example: Proof Repair (PUMPKIN Pi)

Predictable (Equivalences)

+ \Coq + PUMPKIN / +
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Example: Proof Repair (PUMPKIN Pi)
Predictable (Equivalences)
N

old type type .
\Coq PUMPKIN /

o"‘;@_-_}'o

Symbolic Automation (Part 2 of 5)



Example: Proof Repair (PUMPKIN Pi)

Predictable (Equivalences)

—
old type -— type
~ \Coq+PYJMPK|N / ~
b

:
D)

)
I
]

old function function Coq

or proof or proof
{ <
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Example: Proof Repair (PUMPKIN Pi)

Predictable (Equivalences), Dependable

PUMPKIN Pi is
flexible & useful
for real scenarios.

Symbolic Automation (Part 2 of 5) ,



Example: Proof Repair (PUMPKIN Pi)

Predictable (Equivalences), Dependable

Unary to binary (classic benchmark)

Modifying PL (user study)

Extending PL (user study)

Adding indices (ornaments)

Factoring constructors (reviewer)

Permute hypotheses (type theorist)

Vector to finite set (type theorist)

OO O ©

Industrial use (mixed methods)

Symbolic Automation (Part 2 of 5)
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Example: Proof Repair (PUMPKIN Pi)

Symbolic proof repair:
+ predictable

+ dependable

+ understandable

Symbolic Automation (Part 2 of 5) .,



Example: Proof Repair (PUMPKIN Pi)

Symbolic proof repair:

+ predictable

+ dependable

+ understandable” (for type nerds)
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Example: Proof Repair (PUMPKIN Pi)

Understandable® (Transport as a Transformation)

Old Proof Proof
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Example: Proof Repair (PUMPKIN Pi)

Understandable® (Transport as a Transformation)

Old Proof Proof
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Example: Proof Repair (PUMPKIN Pi)

Understandable® (Transport as a Transformation)

~ A
w“w_.

Transport: Rewriting
across Equivalences

The Univalent Foundations Program. 2013. Homotopy
Type Theory: Univalent Foundations of Mathematics.
Institute for Advanced Studly.
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Example: Proof Repair (PUMPKIN Pi)

Understandable® (Transport as a Transformation)

Transport as a
Proof Term Transformation

Symbolic Automation (Part 2 of 5) ,



Example: Proof Repair (PUMPKIN Pi)

Understandable® (Transport as a Transformation)

For type nerds:
Deconstruct Equivalence
(Lambek’s Theorem)

Symbolic Automation (Part 2 of 5)



Example: Proof Repair (PUMPKIN Pi)

Understandable® (Transport as a Transformation)

shape shape
of A of B
Vo-mmmmr update ~ " T "= a’
A B
v _________________
revert
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Example: Proof Repair (PUMPKIN Pi)

Understandable® (Transport as a Transformation)

shape shape
of A of B
Vo-mmmmr update ~ " T "= a’
A B
v _________________
revert
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Example: Proof Repair (PUMPKIN Pi)

Symbolic proof repair:

+ predictable

+ dependable

+ understandable” (for type nerds)
- limited In scope

- takes expertise to extend

Symbolic Automation (Part 2 of 5)



Example: Proof Repair (PUMPKIN Pi)

Limited Scope (Quotient Equivalences)

—— WS NS BN S e
’—_— —_~

- 2 -
one list queue two list queue
- == ~
?

Carlo Angiuli, Evan Cavallo, Anders Mortberg,
and Max Zeuner. Internalizing Representation
Independence with Univalence. POPL 2021.

Symbolic Automation (Part 2 of 5)
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Example: Proof Repair (PUMPKIN Pi)

Limited Scope (Setoid Equivalences)

- S - e o
==
—

’l
~—————————___
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Example: Proof Repair (PUMPKIN Pi)

Limited Scope (Setoid Equivalences), Hard to Extend

One PhD student, |/}
onhe undergrad, !
one advisor,

2.5 years.

Is this sustainable?

2.5 years later...

Symbolic Automation (Part 2 of 5)



Example: Proof Repair (PUMPKIN Pi)

Limited Scope (Setoid Equivalences), Hard to Extend

2.5 years later...

"While the reviewers agree that this
article tackles an interesting problem,
its contributions with respect to
pre-existing and related work appear
too incremental and limited in scope.’

Symbolic Automation (Part 2 of 5)



3. Neural Automation
4. Building Bridges
5. Opportunities



Neural automation:

- unpredictable

- not dependable

- not understandable

+ not very limited in scope

+ takes little expertise to extend

Neural Automation (Part 3 of 5) _



Important note:
Neural proof automation is not brand
new! It is just growing in popularity.
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Baldur: Whole-Proof Generation and Repair
with Large Language Models
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As a result, recent research has focused on automated proof syn
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PRoofster: Automated Formal Verification

Formally verifying software properties is a highly desirable but
Iabor-intensive task. Recent work has developed methods to auto-

for the Isabelle proof assistant. Hammers iteratively apply known

by training a model to predict one proof step
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Arpan Agrawal Emily First Zhanna Kaufman Tom Reichel at a time, and using that model to search through the space of mathematical facts using heuristics. The second is to use search
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5 Abstract

We introduce a new, large proof-repair dataset and benchmark suite for the Coq proof assistant. The

dataset is made up of Git commits from dozens of open-source projects with old and new versions of

definitions and proofs aligned across commits. Building this dataset was a significant undertaking,

highlighting a number of challenges and gaps in existing infrastructure. We discuss these challenges

and gaps, and we provide r community can address them
Our hope is to make it e o that machine-learning tools
for proofs will move to targ iitably across proof assistants.
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Passport: Improving Automated Formal Verification Using .

Identifiers
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Formally verifying system properties is one of the most effective ways of improving system quality, but
its high manual effort requirements often render it prohibitively expensive. Tools that automate formal
verification, by learning from proof corpora to suggest proofs, have just begun to show their promise. These
tools are effective because of the richness of the data the proof corpora contain. This richness comes from
the stylistic conventions followed by communities of proof developers, together with the powerful logical
systems beneath proof assistants, However, this richness remains underexploited, with most work thus far
focusing on architecture rather than on how to make the most of the proof data.

In this paper, we develop Passport, a fully-automated proof-synthesis tool that systematically explores
how to most effectively exploit one aspect of that proof data: identifiers. Passport enriches a predictive Coq
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Baldur: Whole-Proof Generation and Repair
with Large Language Models

Emily First
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ABSTRACT
Formally veriying softwase propesties is o highly desiable but
task. Recent work b thods to auto-
‘mate formal verification using proof assistants, such as Coq and
Tsabelle/HOL, e.g, by training a model to predict one proof step
at a time, and using that model to search through the space of
possible proofs. This paper introduces a new method to automate
formal verification: We use large language models, trained on natu-
ral language text and code and fine-tuned on proofs, to generate
whale proofs for theorems at once, rather than one step at a time.
‘We combine this proof generation model with a fine-tuned repair
model o repair generaied profs futher incrasing proving pover

Markus N. Rabe
Google, Inc.
CA,USA
mrabe@google.com

Brun
University of Massachusetts
Amherst, MA, USA
brun@cs.umass.edu

As a resul, recent research has focused on automated proof syn-
thesis, which can lead to fully automating formal verification.
There are two promising approaches for automating proof syn-
thesis. The first is to use hammers, such as Sledgehammer [64]
for the Isabelle proof assistant. Hammers iteratively apply known
‘mathematical facts using heuristics. The second is to use search-
based neural theorem provers, such as DeepHOL [4], GPT-f [66],
TacticZero [91], Lisa [34]. Evariste [42], Diva [20], TacTok [22],
and ASTactic [96]. Given a partial proof and the current proof state
(which consists of the current goal to prove and the list of known
assumptions), these tools use neural networks to predict the next
individual proof step. They use the proof assistant to cvaluate the
proof steps, which returns a new set of proof states.

paper time
dm.m and
techniques without ing costly

search. (2) Giving the learned model additional context, such as a
prior failed proof attempt and the ensuing error message, results
in proof repair and further improves automated proof generation.
(3) We establish a new state of the art for fully automated proof

Neural theorem provers rely on diverse neural architectures, such
as Wavenet [4, 84], graph neural networks (62], short long-term
‘memory models [20], and language models with the transformer
architecture [27, 66].

In this paper, we propose Baldur, a different, simpler approach to
proof synthesis. We show that using large language models (LLMs),
fine-tuned on proofs, can produce entire proofs for theorems. LLMs
are scaled-up transformer models trained on a large amount of text
data, including natural language and code, that have proven to be

dudi
7. 14]. Here, we

synthesis. We reify our method in a prototype, Baldur, and evaluate
i 4 Fene b lle/HOL the d their proofs.
In addit ly showing f whole proof
generation, repair, and added context, we show that Baldur im
proves on the tool, Thor, generat-

ing proofs for an additional 8.77% of the theorems. Together, Baldur
and Thor ean it of the theorems fully automatically. This
paper paves the way for new research into using large language
‘models for anhmulmg formal verification.

ESEC/FSE:2

quality software. For example, CompCert, a C compiler \rnfed

is s U b itous GCC
g
<o <

‘bitive. For example,
times as long as the compiler code tself [47].

ipervised Models:

taset

using the Bepiee theorem prover [81), was the only com-
LLVA

text and [
shww i semmackale lfctivencss foe whole prul gracraion

The main contributions of our work are:

* We develop Baldur, a novel method that generates
‘whole formal proofs using LLMs, without using ham-
‘mers or computationally expensive search.

f repair task and demonstrate that

Bakdis i e it el e kel gl
i art for theorem proving.

v of
erva [48], one with 8 billion parameters and anoMer with 62 billion
parameters. By contrast, existing tools that use (L)LMs for theorem

1+ We introduce a new, large proof-repair dataset and benchmark suite for the Coq proof assistant. The
15 dataset is made up of Git commits from dozens of open-source projects with old and new versions of
ant undertaking,
these challenges

1 definitions and proofs aligned across commits. Building this dataset was a signifi
v highlighting a mumber of challenges and gaps in cmmg infrastructure. We discus

1 and gaps, and we provide s for o
10 Our hope is to make it easi nilial)sets ay nai]
2 for proofs will move to targ th asiff that m

a1 2012 ACM Subject Cl —+ Machine learning; Software and its

t community can address them.
'so that machine-learning tools

uitably across proof assistants.
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First Project: Passport

Addition of real
numbers is
commutative

Next Tactic }
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First Project: Passport

Category Vocabulary
Indexing

forall r1 r2: R, Subword Sequence

Rplusr1r2=Rplusr2r1 422 Modeling

\ & Path Elaboration
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First Project: Passport

/

Proof State

\

Encoded
Proof State

100101110100
— | 011001001101

—_—

Core Model

4[ Next Tactic ]
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First Project: Passport

Neural automation:

+ not very limited in scope
+ takes little expertise to extend
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First Project: Passport - Big Scope

e Yang and Deng 2019

e Mathematical formalizations, proven correct
programs, and Coqg automation libraries

e 123 open-source Coq projects

e Trained on 97 projects (57,719 theorems)

e Tested on 26 projects (10,782 theorems)

CoqGym
I
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First Project: Passport - Big Scope

We can prove 45% more theorems than before!

2000

1820

1740

1500
1259

1000

# theorems proven

500

0
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First Project: Passport - Big Scope

Diversity brings even higher returns!
647% more theorems than the baseline!

2000 2000
179 2000
g B2 3 m 5 1500 -
(7] (4] o
2 1500 s 2 1500 .% ) +105 +102 *161
3 1117 8 + ‘
é jo00 [967 972 % g 1000 § 10
5 5 2 500
Q [} —
< 500 £ 500 *
#* * 0 2 & oW o O
o o S P A0 @
\‘00 \)c,\ 6\‘0 2 “x ‘(\0\
G [s)
‘(@\\ 2 o B \N\\ \096 0 c;a\“” o “a\% \P~\\\ \\\?}3 *00“ 00(\9 c
,‘0‘*’5 Ry 6\\36 XO\O X 06\‘0 AL \\3(' \ K 0(\“ _\(\eé
Kon ,00 00«\“

(a) The impact of category vocabulary indexing  (b) The impact of subword encoding on each (c) The impact of fully-qualified path encod-
on three identifier categories (without subwords  of the categories of identifiers (with category ing of type constructors and global definitions
or paths): local variables, type constructors, and  vocabulary indexing but without paths). (with category vocabulary indexing but without
global definitions. subwords).
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First Project: Passport - Easy to Extend

Some easy Python scripts on top of
someone else’s existing project
Parallelized work for different extensions
between me and five other authors
Undergraduate implemented most
challenging extension in an order of weeks
Scripts were simple and fun enough that |
got excited when writing one In between
drafting thesis chapters, ran into a couch,
and broke my big toe

Neural Automation (Part 3 of 5)



First Project: Passport

Language models:

- unpredictable

- not dependable

- not understandable

+ not very limited in scope

+ takes little expertise to extend

Neural Automation (Part 3 of 5) _



First Project: Passport - Confusion

e Somehow, the name of the user running the
training script impacted the file order, which
impacted the results of training a model on
identical data in an identical way

e We found a nondeterminism bug in Pytorch

e Some combinations of extensions worked
mysteriously poorly, even though all
together they helped

o Apparently this is just life with even small
LMs? s this life now? Help?
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ABSTRACT

Fumuuy verifying software properties is a highly desirable but
task. Recent work b thods to auto-

‘mate formal verification using proof assistants, such as Coq and

Isabelle/HOL, e.g,, by training a model to predict one proof step

As a resul, recent research has focused on automated proof syn-
thesis, which can lead to fully automating formal verification.
There are two promising approaches for automating proof syn-
thesis. The first is to use hammers, such as Sledgehammer [64]
for the Isabelle proof assistant. Hammers iteratively apply known

Arpan Agrawal Emily First Zhanna Kaufman Tom Reichel at a time, and using that model to search through the space of ~ mathematical facts using heuristics. The second '; ‘]" use m['d;'
fnde o A i Piars .. eible proofs. This i R R based neural theorem provers, such as DeepHOL [4], GPT- [66),
University of Illinois University of University of University of Illinois e n To] o (44] Eviriats (B3] Dival [30) ek [24]-

Urbana- Champaugm IL, USA
arpan2 @i

Amberst, MA, USA Amberst, MA, USA Urbana- Champalg;u, IL, USA

formal verification: We use large language models, trained on natu-
ral language text and code and fine-tuned on proofs, to generate

and ASTactic [96). Given a partial proof and the current proof state
(which consists of the current goal to prove and the list of known

inois.edu efirst@cs.umass.edu umass.edu reichel edu whale proofs for theorems at once, rather than one step at a time.

We combine this proof generation model with a fine-tuned repair assumptions), these tools use neural networks to predict the next

. . L nwdri to repair generated proofs, further increasing proving power. individual proof step. They use the proof assistant to evaluate the
Shizhuo Zhang Timothy Zhou Alex Sanchez-Stern Talia Ringer paper time proof steps, which returns a new set of proof states.
dm. w S Neural theorem provers rely on diverse neural architectures, such
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synthesis. We reify our method in a prototype, Baldur, and evaluate
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the correctness of software systems often requires significantly
more effort than implementing them in the first place, despite
the cxistence of proof assistants, such as Cog, aiding the process.
Recent work has aimed to fully automate the synthesis of formal
verification proofs, but little tool support exists for practitioners.
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As a result, recent research has focused on automated proof syn

< two promising approaches for automating proof syn

thesis. The first is to use hammers, such as S er [64)

for the Isabelle proof assistant. Hammers iteratively apply known
mathematical facts using heuristics. The second is to use search
based neural theorem provers, such as DeepHOL (4], GPT-f [66),
TacticZero [91), Lisa (34), Evariste (42], Diva (20], TacTok [22)
and ASTactic [96). Given a partial proof and the current proof state
(which consists of the current goal to prove and the list of known
assumptions), these tools use neural networks to predict the next
individual proof step. They use the proof assistant to evaluate the
proposed next proof steps, which returns a new set of proof states.
Neural theorem provers rely on diverse neural architectures, such
s Wavenet [, raph neural networks [62), short long-term
memory models [20], and language models with the transformer
architecture (27, 6]

remarkably effective across a wide variety of applications, including
question answeri [

ind text and code generation (7, 14]. Here, we

show their remarkable effectiveness for whole proof generation.
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(3) We establish a new state of the art for fully automated proof
synthesis. We reify our method in a prototype, Baldur, and evaluate
it on a benchmark of 6,336 Isabelle/HOL theorems and their proofs.

ing proofs for an additional 8.7% of the theorems. Together, Baldur

and Thor can prove 65.7% of the theorems fully automatically. This

paper paves the way for new research into using large language

models for automating formal verification.
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As a result, recent research has focused on automated proof syn

ormal verification.

thesis, which can lead to fully automat
There are two promising approaches for automating proof syn

thesis. The first is to use hammers, such as Sledgehammer [64]

for the Isabelle proof assistant. Hammers iteratively apply known
mathematical facts using heuristics. The second is to use search-

based I theorem provers, such as DeepHOL (4], GPT-f [¢
TacticZero [91), Lisa [34], Evariste [42), Diva [20], TacTok [
and ASTactic [96]. Given a partial proof and the current proof state

(which consists of the current

to prove and the list of known
assumptions), these tools use neural networks to predict the next
individual proof step. They use the proof assistant to evaluate the
proposed next proof steps, which returns a new set of proof states.
Neural theorem provers rely on diverse neural architectures, such

Wavenet [4, 8
memory models [

). graph neural networks [62], short long-term

and language models with the transformer

ler approach to
e models (LLMs),

we propose Baldur, a different
We show that using large lan

roofs, can produce entire proofs for theorems. LLMs
are scaled-up transformer models trained on a large amount of text

data, including natural I and code, that have proven to be

remarkably effective across a wide variety of applications, including

question answering, and text and code generation (7, 1. Here, we

show their remarkable effectiveness for whole proof generation.

The main contributions of our work are:
© We develop Baldur, a novel method that generates
whole formal proofs using LLMs, without us

eommntationally expensive search.
repair task and demonstrate that
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Abstract

We introduce a new, large proof-repair dataset and benchmark suite for the Coq proof assistant. The

dataset is made up of Git commits from dozens of open-source projects with old and new versions of

definitions and proofs aligned across commits. Building this dataset was a significant undertaking,
highlighting a number of challenges and gaps in existing infrastructure. We discuss these challenges

and gaps, and we provide r community can address them
Our hope is to make it eas o that machine-learning tools
for proofs will move to targ iitably across proof assistants
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Third Project: PRISM

Dataset for proof repair models for Cog
Actual proof repairs by proof engineers
Collaboration with Radiance

Massive infrastructure undertaking

o Building many different projects

o .. with many different Coq versions

o .. for many different commits

o ..and aligning data across commit pairs
e First repair model trained

e Evaluation WIP

Neural Automation (Part 3 of 5)



Baldur: Whole-Proof Generation and Repair
with Large Language Models

ourth Project: Baldur

Emily First Markus N. Rabe
University of Massachusetts Google, Inc.
Amherst, MA, USA. CA, USs#
efirst@cs.umass.edu mrabe@google.com
Talia Ringer Yuriy Brun
University of lllinois Urbana-Champaign University of Massachusetts
IL, USA Amherst, MA, USA
tringer@illinois.edu brun@cs.umass.edu
ABSTRACT As a result, recent research has focused on automated proof syn-

g software properties is a highly desirable but thesis, which can lead to fully automating formal verification
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Fourth Project: Baldur

e Using an LLM, one could, conceivably,
synthesize entire proofs at once.

e Collaborating with Google, we fine-tuned the
Minerva model to synthesize proofs in
Isabelle/HOL

e Evaluated on PISA dataset (theorems in
Isabelle/HOL)
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Fourth Project: Baldur
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Fourth Project: Baldur

e Baldur (without repair) can synthesize whole
proofs for 47.9% of the theorems, whereas
search-based approaches prove 39.0%.

e Baldur can repair its own erroneous proof
attempts using the error message from the
proof assistant, proving another 1.5%.

e Diversity continues to help. Together with
Thor, a tool that combines a model, search,
and a hammer, Baldur can prove 65.7%.
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Neural automation:

- unpredictable

- not dependable

- not understandable

+ not very limited in scope

+ takes little expertise to extend

Neural Automation (Part 3 of 5) _



S Checking the Proof

S Small Logical Kernel

Tactics ~

Domain-Specific Heuristics S~ ~

~
~
~

Proof Transformations RN

~
~

Producing the Proof Scary Programs RN

~
~

Neural Automation (Part 3 of 5) _



S Checking the Proof

S Small Logical Kernel

Tactics ~

Domain-Specific Heuristics S~ ~

~
~
~

Proof Transformations RN

~
~
~

Producing the Proof chatcer e

~
~

Neural Automation (Part 3 of 5) _



Already Neurosymbolic
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But we want even more of
the benefits of both kinds of
automation.
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4. Building Bridges
5. Opportunities



Observation 1: We can do
fairly well sometimes
without search. Maybe we
can use search at a higher
level than before and get
further returns?
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One idea: Move the search
process up in abstraction.
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One idea: Move the search
process up in abstraction.
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Proof Search
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Conversational Action Search

Getting More out of Large Language Models for Proofs

vy o r - . - 9 U — o
Shizhuo Dylan Zhang', Emily First?, and Talia Ringer®

University of Illinois Urbana-Champaign, USA
2 i s ~ ror
“ University of Massachusetts Amherst, USA

Abstract

Large language models have the potential to simplify formal theorem proving and make
it more accessible. But how to get the most out of these models is still an open question.
To answer this question, we take a step back and explore the failure cases of these models
using common prompting-based technicmes  Ounr talk will discuss these failure cases and

what they can teach us about ho\AITP 202305(* models.
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Conversational Action Search
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Conversational Action Search
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Conversational Action Search

Promising Results
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Observation 2: Diversity In
models helps, and diversity
In technigues appears to
help, too. Let's keep taking
advantage of that.
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Ongoing: Best of both
worlds for proof repair, too.
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Neural proof repair: good for
large, repetitive, mostly syntactic
changes at the tactic level, like
from updating Coq versions
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Neural proof repair: good for
large, repetitive, mostly syntactic
changes at the tactic level, like
from updating Coq versions

Symbolic proof repair: good for
well-scoped semantic changes
at the term level, like those
described by equivalences
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Neurosymbolic proof repair:
good for large, repetitive, mostly
syntactic changes at the tactic
level, like from updating Coq
versions? And also, good for
well-scoped semantic changes
at the term level, like those
described by equivalences?
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Neurosymbolic proof repair:
good for large, repetitive, mostly
syntactic changes at the tactic
level, like from updating Coq
versions? And also, good for
well-scoped semantic changes
at the term level, like those
described by equivalences?
Better than the sum of its parts?
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1. Proof Assistants

2. Symbolic Automation
3. Neural Automation
4. Building Bridges

5. Opportunities



So far I've assumed the
specification already exists.
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Tree Proofs for Free?

Proof Engineer Proof Assistant

() Program
g Specification
N |Fa
)
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Tree Proofs for Free?

Inductive isLeft {A} : @tree A -> @tree A -> Prop :=
| LeafLeaf : V x, isLeft (Leaf x) (Leaf x) 4
| NodeLeft: v x I, isLeft (Leaf x) | -> isLeft (Leaf x) (Node I r)
| NodeRight: Vv x I,

r <> Leaf x -> isLeft (Leaf x) r -> isLeft (Leaf x) (Node I r).

Definition forall_Left {A} (P : @tree A -> Prop) (t : @tree A) :=
Vv |, isLeftlt->PI.

Definition lift_to_tree_prop {A} (P : A -> bool) : @tree A -> Prop :=
fun | => exists x, | = Leaf x /\ P x = true.

Theorem forall_left_leaves_correct {A} : vV pred (t: @tree A),

(forall_Left (lift_to_tree_prop pred) t) <->
(@forall_left_leaves A pred t = true).
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What can we do to help
people specify software, or
conjecture in mathematics?
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What can we do to help

people specify software, or
conjecture in mathematics?
This is risky, but promising,.
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Key Challenge:
There is no oracle for a
specification!
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No Oracle for Specification

true ...
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No Oracle for Specification

Inductive isLeft {A} : @tree A -> @tree A -> Prop :=
| LeafLeaf : V x, isLeft (Leaf x) (Leaf x)
| NodeLeft: v x I, isLeft (Leaf x) | -> isLeft (Leaf x) (Node I r)
| NodeRight: V xIr,
r <> Leaf x -> isLeft (Leaf x) r -> isLeft (Leaf x) (Node I r).

Definition forall_Left {A} (P : @tree A -> Prop) (t : @tree A) :=
Vv |, isLeftlt->PI.

Definition lift_to_tree_prop {A} (P : A -> bool) : @tree A -> Prop :=
fun | => exists x, | = Leaf x /\ P x = true.

Theorem forall_left_leaves_correct {A} : vV pred (t: @tree A),

(forall_Left (lift_to_tree_prop pred) t) <->
(@forall_left_leaves A pred t = true).
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No Oracle for Specification

Inductive isLeft {A} : @tree A -> @tree A -> Prop :=
| LeafLeaf : Vv x, isLeft (Leaf x) (Leaf x)
| NodeLeft: v xIr, isLeft (Leaf x) | -> isLeft (Leaf x) (Node I r).

Definition forall_Left {A} (P : @tree A -> Prop) (t : @tree A) :=
Vv |, isLeftlt->PI.

Definition lift_to_tree_prop {A} (P : A -> bool) : @tree A -> Prop :=
fun | => exists x, | = Leaf x /\ P x = true.

Theorem forall_left_leaves_correct {A} : vV pred (t: @tree A),

(forall_Left (lift_to_tree_prop pred) t) <->
(@forall_left_leaves A pred t = true).
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No Oracle for Specification

Here are some example input/output pairs that satisfy
the specification | have generated for you:

ﬁ tree = Node (Leaf 2, Node (Leaf 4, Leaf 3)) \
let () = Printf.printf "%b\n’

(check_predicate_left_leaves is_even tree) (* true *)

let tree = Node (Leaf 2, Node (Leaf 3, Leaf 4))
let () = Printf.printf "%b\n"
(check_predicate_left_leaves is_even tree) (* true *)

let tree = Node (Leaf 3, Node (Leaf 2, Leaf 4))
let () = Printf.printf "%b\n’
\(Check_predicate_left_leaves is_even tree) (* false *)/

Opportunities (Part 5 of 5)
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No Oracle for Specification

One of these examples looks wrong. The following
code should print false since 3 is not even:

e )
let tree = Node (Leaf 2, Node (Leaf 3, Leaf 4))
let () = Printf.printf "%b\n"
(check_predicate_left_leaves is_even tree) (* false *) y
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No Oracle for Specification

| see, so you want to consider nodes that occur in right
branches too. How is this?

4 A
Inductive isLeft {A} : @tree A -> @tree A -> Prop :=

| LeafLeaf : V x, isLeft (Leaf x) (Leaf x)
| NodeLeft: v x I, isLeft (Leaf x) | -> isLeft (Leaf x) (Node | r)
| NodeRight : V x I, isLeft (Leaf x) r -> isLeft (Leaf x) (Node I r).

\_ W,
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No Oracle for Specification

Close! But | don't want that NodeRight case to hold
whenr is a leaf, otherwise it will just include all leaves,
not just the left ones. For example, this test case you
generated should still print true, but now it is false:

4 N
let tree = Node (Leaf 2, Node (Leaf 4, Leaf 3))

let () = Printf.printf "%b\n"
(check_predicate_left_leaves is_even tree) (* false *)

\_ W

200
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No Oracle for Specification

Understood. How is this?

(Inductive isLeft {A} : @tree A -> @tree A -> Prop := R
| LeafLeaf : V x, isLeft (Leaf x) (Leaf x)
| NodeLeft: Vv x|, isLeft (Leaf x) | -> isLeft (Leaf x) (Node I r)
| NodeRight: V xIr,
r <> Leaf x -> isLeft (Leaf x) r -> isLeft (Leaf x) (Node I r).

201
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No Oracle for Specification

LGTM! Passes all tests.

(Inductive isLeft {A} : @tree A -> @tree A -> Prop := R
| LeafLeaf : V x, isLeft (Leaf x) (Leaf x)
| NodeLeft: Vv x|, isLeft (Leaf x) | -> isLeft (Leaf x) (Node I r)
| NodeRight: V x I,
r <> Leaf x -> isLeft (Leaf x) r -> isLeft (Leaf x) (Node I r).

202

Opportunities (Part 5 of 5)



No Oracle for Specification

OK, then the generated code is wrong. Here is updated

code that satisfies the specification:

et rec aux is_left = function
Leaf x -> if is_left then predicate x else true

In aux true tree

let tree = Node (Leaf 2, Node (Leaf 3, Leaf 4))
let () = Printf.printf "%b\n"
Qcheck_predicate_left_leaves is_even tree)

@[ rec check_predicate_left_leaves predicate tree = \

Node (left, right) -> (aux true left) && (aux false right)

_/
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No Oracle for Specification

I've proven it satisfies the specification in Coq for you.

ﬂ heorem forall_left_leaves_correct {A} : vV pred (t: @tree A), \

(forall_Left (lift_to_tree_prop pred) t) <->
(@forall_left_leaves A pred t = true).

Proof.
unfold forall_left_leaves, forall_Left, lift_to_tree_prop. split.

- intros. apply aux_correct. auto.

- induction t; intros.
+ edestruct H. inversion HO. subst. exists a. split; auto.

+ simpl in H. inversion HO; subst.
* apply IHt1; auto. destruct (aux pred true t1) eqn:b1; auto.
* apply IHt2; auto. destruct (aux pred false t2) eqgn:b2.
-- destruct t2; auto. inversion H5. subst. destruct H4. auto.

\ - destruct (aux pred true t1) egn:b1; discriminate.
Qed. /
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Tree Proofs for Freel

Proof Engineer Proof Assistant

() Program
g Specification
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Open Question:

What tools can best help
users make sense of
generated theorems?

What information presented
In what ways best helps
users ensure that they

match their intentions?
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